Rolling motion including torque and acceleration

AI Thread Summary
A uniform solid cylinder lawn roller experiences a constant horizontal force while rolling without slipping. The acceleration of the center of mass can be derived as \(\frac{2\vec{F}}{3M}\), and the minimum coefficient of friction required to prevent slipping is \(\frac{F}{3Mg}\). The discussion highlights the need to analyze the forces and torques acting on the roller, particularly focusing on the torque about the center of mass. Participants suggest using a force diagram to clarify the relationships between forces and motion. Understanding these concepts is crucial for solving the problem effectively.
XxBollWeevilx
Messages
78
Reaction score
0

Homework Statement



A constant horizontal force \vec{F} is applied to a lawn roller in the form of a uniform solid cylinder of radius R and mass M. If the roller rolls without slipping on the horizontal surface, show that (a) the acceleration of the center of mass is \frac{2\vec{F}}{3M} and (b) the minimum coefficient of friction necessary to prevent slipping is \frac{F}{3Mg}. (Hint: Take the torque with respect to the center of mass.

Homework Equations



Not quite sure.

The Attempt at a Solution



Well, this is my last problem of the night to finish. To be honest, i have no idea where to begin. I don't know how to examine the acceleration or how to use torque to find friction. Any step in a positive direction would be helpful. I appreciate it.
 
Physics news on Phys.org
I was thinking maybe a force diagram...but I'm not sure how it would apply to the rolling motion.
 
Also, I'm not sure whether the applied force is causing any torque or not.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top