Rotating a Perfectly Smooth Cylinder

Bmmarsh
Messages
4
Reaction score
0
Consider the following model of a perfectly smooth cylinder. it it a ring of equally spaced, identical particles, with mass M/N, so that the mass of the ring is M and its moment of inertia MR², with R the radius of the ring. Calculate the possible values of the angular momentum. Calculate the energy eigenvalues. What is the energy difference between the ground state of zero angular momentum, and the first rotational state? Show that this approaches infinity as N-->oo. Constrast this with the comparable energy for a thick "nicked" cylinder, which lacks the symetry under the rotation through 2pi/N radians. This exemple implies that it is impossible to set a perfectly smooth cylinder in rotation, which is consistent with the fact that for a perfectly smooth cyinder such a rotation would be unobservable.

I've seen this question asked before, but no one offered a solution. And now that I have had this problem assigned to me, I figured I'de check to see if anyone has come up with a solution yet.

Conceptually, I understand that a perfectly smooth cylinder cannot rotate because it would be unobservable, but how would one go about showing this mathematically? Perhaps showing that it would take an infinite amount of energy to set such a cylinder in motion would be easier--however, I still wouldn't know how to mathematically derive this result.

Thanks for at least reading this =)
Any help would be appreciated.
 
Last edited:
Physics news on Phys.org
I don't really understand. Is this a classical or quantum cylinder?
 
I'm sorry--this would be a quantum cylinder.
 
And i suppose that thick necked cylinder has some mass density which is uniform?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top