Rotation and translation of basis to remove cross terms

cooev769
Messages
114
Reaction score
0
So in our notes we are given a general quadratic equation in three dimensions of the form:

Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0

And then they say, by some rotation we can change this to the standard form:

Ax^2 + By^2 + Cz^2 + J = 0

The lecturer said don't worry about it you need to have done linear algebra to understand this. It turns out I have actually done linear algebra and am only doing this paper due to it being compulsory and a year behind. I've dealt with transformation of basis, linear independence etc. So if somebody could explain to me how they achieve this that would be good.

Thanks.
 
Physics news on Phys.org
Look up diagonalization of quadratic forms.
 
Thanks Erland, just what I was looking for. You are a scholar and a gentleman.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top