Rotational Kinematics - Cylinder down a slope.

AI Thread Summary
A non-uniform cylinder with a mass of 9 kg and radius of 1.2 m rolls down a 20° incline without slipping, prompting a discussion on calculating its center-of-mass acceleration. Key equations identified include m*g*sin(20) - F(friction) = m*a, I*alpha = F(friction)*r, and a = alpha*r. The frictional force is the sole contributor to torque, as both the normal force and gravitational force act at the center of mass. The initial attempts to solve the problem involved confusion over the equations, but the correct relationships were ultimately clarified. The discussion highlights the importance of understanding the role of friction in rotational motion.
CaptainSFS
Messages
57
Reaction score
0

Homework Statement



A certain non-uniform but cylindrically symmetric cylinder has mass 9 kg, radius 1.2 m, and moment of inertia about the center of mass 7.6 kg m2. It rolls without slipping down a rough 20° incline.

What is the acceleration of the cylinder's center-of-mass?


Homework Equations



kinematics and the rotational equivalents

The Attempt at a Solution



The hints I was given was to find/use 3 equations. I believe the equations I found are wrong. I seem to have some difficulty with kinematics, and now especially this rotational kinematics.

I found:
m*g*sin(20) - F(friction) = m*a
T(orque) = I * alpha
a = alpha * r

Any help to whether these are the useful equations, and how I may go about using these? Thx. :)
 
Physics news on Phys.org
What is the relationship between torque on the cylinder and the frictional force at the circumference?
 
Are they the same?

b/c the frictional force is a force not coming out from the CM; therefore it helps it spin? I believe it is the only other force, so they must be the same?
 
Last edited:
I also tried using the gravitational force as the Torque.
I used m*g*sin(20)=I*alpha
m*g*sin(20)/I=alpha and alpha*R = a
so... m*g*sin(20)*R/I=a,
but this didn't work either.

-------------------
I just solved this problem.
 
Last edited:
Use these equations:
mgsin(20) - F(friction) = ma
I(alpha) = F(friction)*r
a=(alpha)*r

The only force that applies a torque is friction, because the normal force and gravity both act on the center of mass.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top