Abdul Quadeer said:
I don't have a clear explanation for it. May be because normal force always acts along the centre of mass of a body.
Centripetal acceleration is necessary for rotation.
1/ About the direction of normal force:
Actually
the normal force ALWAYS acts perpendicular to the contacting surface. Ideally it should be a contacting point, not a surface. But the real situation is never like that. Instead of a rigid rod, you push your thumb on the ground and will see that it's a contacting surface.
So that's the same with the rod. When the width of the rod is so small compared to its length, you can model the rod as a straight line whose width = 0. But when it comes to normal force, we have to look at it carefully. See the attached picture. If you try to zoom it and zoom it and zoom it, you will see something like that: it's a contacting surface. Therefore the normal force acts perpendicular to the ground / the plane, not along the rod.
2/ About the centripetal acceleration:
When you mention centripetal acceleration (C.A.), you MUST refer to
C.A. of which point. For example, if it's a rough surface and the lower end of the rod sticks to the ground, then the rod performs rotation about that end. Every point on the rod has its own C.A., except for the lower end: this end doesn't move, so it doesn't have C.A.
Likewise, in the case that the surface is smooth, the rod falls: the center of mass (COM) of the rod & the lower end of the rod perform motion in a straight line, so these 2 points don't have C.A., while other points perform "weird" motion (their orbits are neither circle nor straight line!), so these points have C.A.