Sakurai pr. 1.18 - bra-c-ket sandwiches

  • Thread starter Thread starter bjnartowt
  • Start date Start date
  • Tags Tags
    Sakurai
bjnartowt
Messages
265
Reaction score
3

Homework Statement



c) explicit calculations, using the usual rules of wave mechanics, show that the wave function for a Gaussian wave packet given by

\left\langle {x'|\alpha } \right\rangle = {(2\pi {d^2})^{ - 1/4}}\exp \left( {{\bf{i}}{\textstyle{{\left\langle p \right\rangle x'} \over \hbar }} - {\textstyle{{{{(x' - \left\langle x \right\rangle )}^2}} \over {4{d^2}}}}} \right)

…satisfies the minimum uncertainty relation,
\sqrt {\left\langle {\Delta {x^2}} \right\rangle } \sqrt {\left\langle {\Delta {p^2}} \right\rangle } = {\textstyle{1 \over 2}}\hbar

Prove that the requirement,
\left\langle {x'|\Delta x|\alpha } \right\rangle = \lambda \cdot \left\langle {x'|\Delta p|\alpha } \right\rangle {\rm{ Re(}}\lambda ) = 0

…is indeed satisfied for such a Gaussian wavepacket, in agreement with b, which said,
{\left\langle {\Delta {A^2}} \right\rangle \left\langle {\Delta {B^2}} \right\rangle = {\textstyle{1 \over 4}}{{\left| {\left\langle {\left[ {\Delta A,\Delta B} \right]} \right\rangle } \right|}^2}}

Homework Equations



dirac's bra-c-kets

The Attempt at a Solution



well, I'm fine chunking through this stuff, but i reached this step, where i am comparing my result to someone else's, and they claim,
\left\langle {x'|\Delta p|\alpha } \right\rangle = \left\langle {x'|(p - \left\langle p \right\rangle )|\alpha } \right\rangle = \left\langle {x'|p|\alpha } \right\rangle - \left\langle p \right\rangle \cdot \left\langle {x'|\alpha } \right\rangle = ... = - {\bf{i}}\hbar {\textstyle{\partial \over {\partial x'}}}\left\langle {x'|\alpha } \right\rangle - \left\langle p \right\rangle \cdot \left\langle {x'|\alpha } \right\rangle

i recognize -i*hbar*(d/dx) as the momentum operator, of course. but i am at odds with the "..." i indicated between equals signs above. i tried inserting an identity operator,
\left\langle {x'|p|\alpha } \right\rangle = \left\langle {x'|p{\bf{I}}|\alpha } \right\rangle

and chunked out,
\left\langle {x'|p{\bf{I}}|\alpha } \right\rangle = \left\langle {x'|p\left( {\int {\left| {x'} \right\rangle \left\langle {x'} \right|} \cdot dx'} \right)|\alpha } \right\rangle = \int {\left\langle {x'|p|x'} \right\rangle \cdot \left\langle {x'|\alpha } \right\rangle \cdot dx'}

and i found this implied (i think),
\int {\left\langle {x'|p|x'} \right\rangle \cdot \left\langle {x'|\alpha } \right\rangle \cdot dx'} = p\left\langle {x'|\alpha } \right\rangle

which looks not right to me.

suggestions? or is my source incorrect?
 
Physics news on Phys.org
well, I'm fine chunking through this stuff, but i reached this step, where i am comparing my result to someone else's, and they claim,

\left\langle {x'|\Delta p|\alpha } \right\rangle = \left\langle {x'|(p - \left\langle p \right\rangle )|\alpha } \right\rangle = \left\langle {x'|p|\alpha } \right\rangle - \left\langle p \right\rangle \cdot \left\langle {x'|\alpha } \right\rangle = ... = - {\bf{i}}\hbar {\textstyle{\partial \over {\partial x'}}}\left\langle {x'|\alpha } \right\rangle - \left\langle p \right\rangle \cdot \left\langle {x'|\alpha } \right\rangle

did that go through?
 
argh! try this

\left\langle {x'|\Delta p|\alpha } \right\rangle = \left\langle {x'|(p - \left\langle p \right\rangle )|\alpha } \right\rangle = \left\langle {x'|p|\alpha } \right\rangle - \left\langle p \right\rangle \cdot \left\langle {x'|\alpha } \right\rangle = - {\bf{i}}\hbar {\textstyle{\partial \over {\partial x'}}}\left\langle {x'|\alpha } \right\rangle - \left\langle p \right\rangle \cdot \left\langle {x'|\alpha } \right\rangle
 
sigh...how obnoxious. well, "i found this implied (i think)" is where my real question is...
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top