Sanity check please -- Load cable swinging outward on a rotating crane

AI Thread Summary
The discussion focuses on the physics of load cables swinging outward on a rotating crane, utilizing the equation Fcp = -m*w^2*r. Participants analyze the relationship between variables, particularly how to express r1 and r2 in terms of other parameters. There is a debate about the relevance of certain variables, with a suggestion that one variable may not be necessary. The importance of understanding the radius of rotation, R, as the sum of r1 and r2 is emphasized. The conversation concludes with a confirmation of the calculations and a light-hearted acknowledgment of simplifying the equation.
Thickmax
Messages
31
Reaction score
8
Homework Statement
Please can my work be sanity checked? I think I'm on the right lines
Relevant Equations
See below
1624914062559.png
So I know

Fcp=-m*w^2*r

So from the equation -m*w^2*r=m*g*tan(theta)

r = r1+r2

so to rewrite

-m*(w^2)*(r1+r2)=m*g*tan(theta)
So
r1+r2=(m*g*tan(theta))/-m*(w^2)

r1=((m*g*tan(theta))/-m*(w^2)) - r2

Am I doing this nearly correct?
 
Last edited by a moderator:
Physics news on Phys.org
Thickmax said:
Am I doing this nearly correct?
Yes, but one of your variables is not in the list of those allowed in the answer. Can you see a way to get rid of it?
 
Shouldn't ##r_2## be directly proportional to ##\omega^2##?
 
Lnewqban said:
Shouldn't ##r_2## be directly proportional to ##\omega^2##?
No the crane rotates around its base column, the radius of rotation is ##R=r_1+r_2## not just ##r_2##.
 
haruspex said:
Yes, but one of your variables is not in the list of those allowed in the answer. Can you see a way to get rid of it?
I can indeed! m's are overrated! Thank you for the confirmation
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top