Scalar potential and line integral of a vector field

alecst
Messages
3
Reaction score
0

Homework Statement



nSlbe.png


Homework Equations



Given above.

The Attempt at a Solution



I attempted this problem first without looking at the hint.

I've defined F(r) as (B+A)/2 + t(B-A)/2, with dr as (B-A)/2 dt . Thus F(r)dr = ((B+A)/2)*((B-A)/2)+((B-A)/2)^2 dt

When I integrate this from -1 to 1 I get 1/2*(B^2-A^2).

When I then looked at the hint, I saw it mentioned another (B^2+A^2)/2 term and another "c," neither of which I have, and my integrand has no "tau" squared element either. Is there a point where I went wrong here?
 
Physics news on Phys.org
I'm guessing that you don't get to define F(r) but instead have to use the one given to you in problem 4.01, whatever that is.
 
The idea is to used the derived formula to solve the next problem, which is find a scalar potential function phi(r) such that the line integral F(B,A) (as in 4.02) = phi(B)-phi(A). So it's clear I need to solve this in terms of B and A.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top