- #1
Jeff-AC4AQ
- 3
- 0
I'm would like to learn of the practicality of separating HHO gas released from a photovoltaic charged lead-acid battery bank for hydrogen storage, perhaps by exploiting the substantial difference in density of the two elemental gases.
It occurred to me that were the gas emitted from batteries collected by means of tubing leading to a manifold, and then to a column, the hydrogen will tend to collect at the top of the column and the oxygen will sink to the bottom. Electronic hydrogen detectors near the top of the column would control a servo controlled valve and positive displacement pump, with the concentrated hydrogen passing through a catalytic mesh to strip the remaining oxygen before high-pressure storage.
I believe there must be a reason why this would not achieve the desired results but I'm unable to put my finger on it. Preventing the recombination of the HHO before separation is a must for safety, even though the quantities are small. Use of non-reactive material which does not accumulate static charges will make things unlikely to go bang in the night.
Any thoughts on this would be appreciated, Jeff
It occurred to me that were the gas emitted from batteries collected by means of tubing leading to a manifold, and then to a column, the hydrogen will tend to collect at the top of the column and the oxygen will sink to the bottom. Electronic hydrogen detectors near the top of the column would control a servo controlled valve and positive displacement pump, with the concentrated hydrogen passing through a catalytic mesh to strip the remaining oxygen before high-pressure storage.
I believe there must be a reason why this would not achieve the desired results but I'm unable to put my finger on it. Preventing the recombination of the HHO before separation is a must for safety, even though the quantities are small. Use of non-reactive material which does not accumulate static charges will make things unlikely to go bang in the night.
Any thoughts on this would be appreciated, Jeff