1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Sequences of positive numbers and limits

  1. Jul 31, 2005 #1
    Let (x(n)) and (y(n)) be sequences of positive numbers such that lim(x(n)/y(n)) = 0.
    If lim(x(n)) = +∞, then lim(y(n)) = +∞
    If (y(n)) is bounded, then lim(x(n)) = 0

    To me this is self-evident. But HOW can it be proved?
     
  2. jcsd
  3. Jul 31, 2005 #2
    applications of definitions:

    for any [tex]\epsilon > 0[/tex] there's an [tex]n_\epsilon : [/tex] if [tex]n > n_\epsilon[/tex] then [tex]|\frac {x_n} {y_n}| < \epsilon [/tex] and for any [tex]M > 0[/tex] there's an [tex]n_M : [/tex] if [tex]n > n_M[/tex] then [tex]|x_n| > M [/tex]

    then for any [tex]M > 0[/tex] there's a k := max {[tex]n_M; n_\epsilon[/tex]} : if [tex]n > k[/tex] then [tex]|\frac {x_n} {y_n}| < \epsilon[/tex] and [tex]|x_n|> M[/tex] then [tex] \epsilon|y_n|>|x_n|> M[/tex] then [tex]|y_n|> \frac {M} {\epsilon} > M[/tex]

    CVD
     
    Last edited: Jul 31, 2005
  4. Jul 31, 2005 #3
    The other is possibly simpler:

    [tex]\exists M > 0 : \forall n \in \mathbb{N}, |y_n| < M[/tex]
    [tex]
    \forall \epsilon > 0, \exists n_{\epsilon} : n > n_{\epsilon} \Rightarrow |\frac {x_n} {y_n}| < \epsilon [/tex]
    [tex]\Rightarrow \forall \delta > 0, \exists n_{\delta} : n > n_{\delta} \Rightarrow \frac {|x_n|} {\delta} < |y_n| < M [/tex]
    [tex]\Rightarrow |x_n| < \delta M, \delta := \frac {\epsilon} {M} [/tex]
    [tex]\Rightarrow \exists k := max(n_\epsilon; n_\delta) : n > k \Rightarrow |x_n| < \epsilon[/tex]

    CVD
     
    Last edited: Jul 31, 2005
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook




Loading...