1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Sequences of positive numbers and limits

  1. Jul 31, 2005 #1
    Let (x(n)) and (y(n)) be sequences of positive numbers such that lim(x(n)/y(n)) = 0.
    If lim(x(n)) = +∞, then lim(y(n)) = +∞
    If (y(n)) is bounded, then lim(x(n)) = 0

    To me this is self-evident. But HOW can it be proved?
     
  2. jcsd
  3. Jul 31, 2005 #2
    applications of definitions:

    for any [tex]\epsilon > 0[/tex] there's an [tex]n_\epsilon : [/tex] if [tex]n > n_\epsilon[/tex] then [tex]|\frac {x_n} {y_n}| < \epsilon [/tex] and for any [tex]M > 0[/tex] there's an [tex]n_M : [/tex] if [tex]n > n_M[/tex] then [tex]|x_n| > M [/tex]

    then for any [tex]M > 0[/tex] there's a k := max {[tex]n_M; n_\epsilon[/tex]} : if [tex]n > k[/tex] then [tex]|\frac {x_n} {y_n}| < \epsilon[/tex] and [tex]|x_n|> M[/tex] then [tex] \epsilon|y_n|>|x_n|> M[/tex] then [tex]|y_n|> \frac {M} {\epsilon} > M[/tex]

    CVD
     
    Last edited: Jul 31, 2005
  4. Jul 31, 2005 #3
    The other is possibly simpler:

    [tex]\exists M > 0 : \forall n \in \mathbb{N}, |y_n| < M[/tex]
    [tex]
    \forall \epsilon > 0, \exists n_{\epsilon} : n > n_{\epsilon} \Rightarrow |\frac {x_n} {y_n}| < \epsilon [/tex]
    [tex]\Rightarrow \forall \delta > 0, \exists n_{\delta} : n > n_{\delta} \Rightarrow \frac {|x_n|} {\delta} < |y_n| < M [/tex]
    [tex]\Rightarrow |x_n| < \delta M, \delta := \frac {\epsilon} {M} [/tex]
    [tex]\Rightarrow \exists k := max(n_\epsilon; n_\delta) : n > k \Rightarrow |x_n| < \epsilon[/tex]

    CVD
     
    Last edited: Jul 31, 2005
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Sequences of positive numbers and limits
  1. Limit of a sequence (Replies: 5)

  2. Limit of sequence (Replies: 13)

  3. Limits of Sequences (Replies: 8)

  4. Limit of a sequence (Replies: 3)

  5. Limit of a sequence (Replies: 2)

Loading...