Longitudinal shear stress acts into the plane of the page along the length of the beam , it is designated as q in your post on thin walls, horizontal flange shear stress accompanied by the equal magnitude longitudinal shear stress along the beam length.
When a beam is subject to vertical loads, and you want to calculate vertical shear stresses using VQ/It, Q is the area above the horizontal cut where you want to determine stresses time the distance from its centroid to the neutral axis. When you want to calculate horizontal shear stresses under the same vertical load, Q is the area to the right of the vertical cut where you want to determine stresses time the distance from its centroid to the same neutral axis. This is why you get different vertical and horizontal shear stresses in the I beam flange. But in post 10, this is a solid beam. There are no horizontal shear stresses because any area to the right of a vertical cut has its centroid located at the neutral axis, thus Q = A(y-bar) is zero because y-bar is zero. There is however a longitudinal shear stress associated with the vertical shear stress. I know you are probably still confused, because as I have mentioned, it is a difficult concept to grasp.