Shifting the origine of time in isotropic oscillator

esradw
Messages
26
Reaction score
0
I am really lost here :(

The equation of motion X(t)=Ax Cos(wt-delta(x))
Y(t)=Ay Cos(wt-delta(y))
by shifting the origine of time ( t'=t+to where I need to figure out what is appropriate for time to ) and ( Delta=Delta(y)-Delta(x) )
I am suposed to find X(t)=Ax Cos(wt) and Y(t)=Ay Cos(wt-Delta)

I wish I could give some of my work but I can't even start it right now since I cannot think of the appropriate time (to) for X , I know that it can not be 0 because then I come to the same point again.
anyhelp appreciated
thanks
 
Physics news on Phys.org
I think you mean for the argument of that last function you gave to be t'. What do you get when t'=0? Compare this to what you get with the original function at the same time as measured in t (ie, in terms of to).
 
Last edited:
Yes t to be t' but in the question itself says once you find the solution with t',convert it into t .
I thought I can give to= dx/w then my equation become for X=Ax Cos( wt'-(wto+Deltax)) and when I unpack it, X/Ax=Cos(wt')Cos(dx+Deltax)+Sinwt' Sin(dx+Deltax) that has to stay only X/Ax=Cos(wt') how to come to this conclution ? How to get red of Cos(dx+Deltax))+Sinwt' Sin(dx+Deltax) I don't know :((((((
any idea?
 
I figured it out

thanks again
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top