Show that dim U <= n

  • Thread starter brru25
  • Start date
  • #1
29
0

Homework Statement



Let U be a vector subspace of C2n such that
sum(xi*yi) = 0 for 1 <= i <= 2n for any x, y ∈ U. Show that dim U <= n. Give an example of such a subspace U with dim U = n

2. The attempt at a solution

I tried just writing out the summation and was thinking along the lines of linear independence but I don't think that applies here (maybe it does, I'm not sure). Could I think of a linear map contained in U that maps two vectors x and y to be the sum = 0? I think I'm confusing myself here.
 

Answers and Replies

  • #2
lanedance
Homework Helper
3,304
2
i'm not sure i understand the question correctly... so is that effectively the compex innner product of 2 vectors in the subsapce is always zero?

[tex] <\texbf{x},\texbf{y}> = \sum_i x_i^* y_i [/tex]

but if that were the case, as U is a vector space, if x is in U, then so is c.x, but
[tex] <\texbf{x},\texbf{cx}> = c||x||^2 [/tex]
contradiction?
 
  • #3
Hurkyl
Staff Emeritus
Science Advisor
Gold Member
14,916
19
Maybe by * he meant multiplication rather than complex conjugation? We'll have to wait for him to clarify, I guess.
 
  • #4
34,976
6,729
Glad you guys (lanedance and Hurkyl) jumped in on this one. I was thinking along the lines that lanedance described, except I was thinking of this product of a vector with itself.
[tex]\sum_{i = 1}^{2n} x_i*x_i~=~0[/tex]
which suggests that all the x_i's are 0.
 
  • #5
29
0
it's multiplication not conjugate (sorry about the mix-up everybody!)
 
  • #6
34,976
6,729
brru25, You're sure you have given us the exact problem description, right?
 
  • #7
29
0
positive, word-for-word.....see why I'm confused? :-)
 
  • #8
lanedance
Homework Helper
3,304
2
ok, think I'm getting it now, sounds like what Hurkyl was thinking...

I haven't worked it, but would start with an example in the 2D case in [itex] \mathbb{C}^2[/itex], so n = 1

so say you have a vector (a,b) which is in U, it satisfies the rule with itself
[tex] \sum_i x_i^2 = a^2 + b^2 = 0[/tex]

so, first can you find a vector that satisfies above... and 2nd can you show given a vector in U, there can be no other linearly independent vectors in U?
 
Last edited:

Related Threads on Show that dim U <= n

Replies
1
Views
862
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
5
Views
1K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
6
Views
1K
Replies
12
Views
6K
Replies
6
Views
2K
  • Last Post
Replies
7
Views
558
Replies
5
Views
8K
Replies
4
Views
2K
Top