Show that the expectation value of angular momentum <Lx> is zero

Jimmy25
Messages
69
Reaction score
0

Homework Statement



Show that the expectation value of angular momentum <Lx> is zero

Homework Equations



L±|l,m⟩ = SQRT(l(l+1)−m(m±1)h|l,m±1⟩

L± = Lx ± iLy

The Attempt at a Solution



I'm supposed to use ladder operators here to show <Lx> is zero.

I start with <Lx>=<l,m|Lx|l,m> but don't know where to go from here. I've tried different things but all the methods I've tried seem to lead to a dead end...
 
Physics news on Phys.org
Jimmy25 said:

Homework Statement



Show that the expectation value of angular momentum <Lx> is zero

Homework Equations



L±|l,m⟩ = SQRT(l(l+1)−m(m±1)h|l,m±1⟩

L± = Lx ± iLy

The Attempt at a Solution



I'm supposed to use ladder operators here to show <Lx> is zero.

I start with <Lx>=<l,m|Lx|l,m> but don't know where to go from here. I've tried different things but all the methods I've tried seem to lead to a dead end...

Solve your second equation to get L_x in term of L_+ and L_-.

Now, substitute this L_x into \langle L_x \rangle and use the first equation to calculate it.
 
I'm not seeing how that would help. Then I just get an equation in terms of L+, L- and Ly.

Lx=L± minus plus iLy
 
Can anyone help me out here?
 
Use what mathfeel said and think about orthogonality of |l,m> states.
 
You have two equations:
\begin{align*}
\hat{L}_+ &= \hat{L}_x + i\hat{L}_y \\
\hat{L}_- &= \hat{L}_x - i\hat{L}_y
\end{align*}Solve them for Lx in terms of L+ and L-.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top