Show that x and y are independent in this joint distribution

endeavor
Messages
174
Reaction score
0
Given that the joint probability Pr(w,x,y,z) over four variables factorizes as
Pr(w,x,y,z) = Pr(w) Pr(z|y) Pr(y|x,w)Pr(x)
show that x is independent of w by showing that Pr(x,w) = Pr(x)Pr(w).

Attempt: if we simply assume Pr(x,w) = Pr(x)Pr(w), then:
<br /> \begin{align}<br /> Pr(w,x,y,z) &amp;= Pr(w) Pr(z|y) Pr(y|x,w) Pr(x)\\<br /> &amp;\stackrel{?}= Pr(x,w) Pr(z|y) Pr(y|x,w)\\<br /> &amp;\stackrel{?}= Pr(z|y) Pr(w,x,y)<br /> \end{align}<br />

But can we say the last line equals Pr(w,x,y,z)? I think this problem can be solved by simply applying Bayes' rule several times, but I can't seem to wrap my head around it.
 
Physics news on Phys.org
What we need to prove is P(w,x) = P(w)P(x). P(w,x) can be computed easily by integrating (or summing) P(w,x,y,z) over all y and z :wink:
 
Ah, I see. So we have:
<br /> \begin{align}<br /> Pr(x,w) &amp;= \iint Pr(w,x,y,z)\,dydz \\<br /> &amp;= \iint Pr(w)Pr(z|y)Pr(y|x,w)Pr(x)\,dydz \\<br /> &amp;= Pr(w)Pr(x) \iint Pr(z|y)Pr(y|x,w)\,dydz \\<br /> &amp;= Pr(w)Pr(x) <br /> \end{align}<br />
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top