Show the integral of dx/(1-x^2/a^2)

  • Thread starter Thread starter chris_0101
  • Start date Start date
  • Tags Tags
    Integral
chris_0101
Messages
59
Reaction score
0

Homework Statement


Hi, I am having a bit of trouble visualizing the process of the following integral:

∫dx/(1-x^2/a^2)

The answer to this would be: atanh-1\frac{x}{a}

if someone could show me this, that would be greatly appreciated.

Thanks
 
Physics news on Phys.org
Substitute x/a = tanh θ and use the identity 1 - (tanh θ)^2 = 1/(cosh θ)^2.
 
thanks for the tip, I managed to solve the question.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top