VinnyCee
- 486
- 0
Homework Statement
If x(t) is a periodic signal with period T, show that x(at), a > 0, is a periodic signal with period \frac{T}{a}, and x\left(\frac{t}{b}\right), b > 0, is a periodic signal with period bT.
Homework Equations
HINT: Define x_a(t)\,=\,x(at) and x_b(t)\,=\,x\left(\frac{t}{b}\right). Show that x_a\left(t\,+\,T_a\right)\,=\,x_a(t)\,\forall\,t\,\in\,\mathbb{R} and x_b\left(t\,+\,T_b\right)\,=\,x_b(t)\,\forall\,t\,\in\,\mathbb{R}, where T_a\,=\,\frac{T}{a} and T_b\,=\,bT.
The Attempt at a Solution
I take the hint, and define
x_a(t)\,=\,x(at)
Now, I assume that x_a(t) is periodic, with a period \frac{T}{a}
x_a(t)\,=\,x_a\left(t\,+\,\frac{T}{a}\right)
x_a\left(t\,+\,\frac{T}{a}\right)\,=\,x\left[a\left(t\,+\,\frac{T}{a}\right)\right]\,=\,x\left(at\,+\,T\right)
\therefore\,x_a\left(t\,+\,\frac{T}{a}\right)\,=\,x_a(t)\,\forall\,t\,\in\,\mathbb{R}
Does this seem right?
Last edited: