Showing the force on a magnetic dipole

AI Thread Summary
The discussion focuses on deriving the force on a magnetic dipole in a magnetic field, represented by the equation F = (m · ∇)B. Participants confirm the validity of using the vector identity for the gradient of a dot product and clarify that the dipole moment m is constant, making its derivative zero. They emphasize that the equation applies to loops of current and can also be used for circuits, although integration may be necessary for larger loops or rapidly changing fields. The conversation also touches on the application of the equation to permanent magnets, where the force can be calculated using the magnetization M. Overall, the participants successfully demonstrate the necessary result for the force on a magnetic dipole.
rebc
Messages
6
Reaction score
0

Homework Statement


We're given a situation where the circuit can move under the influence of a magnetic force. Now I need to show that the force on the magnetic dipole is

Homework Equations


$$\vec{F} = (\vec{m} \nabla) \vec{B} $$

The Attempt at a Solution


Could I start from a given Force for a loop with a dipole moment in the B-field, where
$$\vec{F} = \nabla (\vec{m} \cdot \vec{B})$$
and apply the identity $$\vec{F} = \vec{m} \times (\nabla \times \vec{B}) +\vec{B} \times(\nabla \times \vec{m}) + (\vec{m} \cdot \nabla)\vec{B} + (\vec{B}\cdot\nabla)\vec{m}$$
 
Last edited:
Physics news on Phys.org
rebc said:

Homework Statement


We're given a situation where the circuit can move under the influence of a magnetic force. Now I need to show that the force on the magnetic dipole is

Homework Equations


$$\vec{F} = (\vec{m} \nabla) \vec{B} $$

The Attempt at a Solution


Could I start from a given Force for a loop with a dipole moment in the B-field, where
$$\vec{F} = \nabla (\vec{m} \cdot \vec{B})$$
and apply the identity $$\vec{F} = \vec{m} \times (\nabla \times \vec{B}) +\vec{B} \times(\nabla \times \vec{m}) + (\vec{m} \cdot \nabla)\vec{B} + (\vec{B}\cdot\nabla)\vec{m}$$
I think your approach is more accurate than the problem statement which needs a dot product in it. And yes, you got the vector identity correct for the gradient of a dot product. ## \vec{m} ## is a constant so vector derivative operations on it are zero. Also ## \nabla \times \vec{B} =0 ## for the steady state where no currents are present. (Comes from Maxwell's ## \nabla \times \vec{B}=\mu_o \vec{J}+\mu_o \epsilon_o \dot{\vec{E}} ## . Any currents from ## \vec{m} ## don't count as part of ## \vec{J} ## because ## \vec{B} ## is the external field applied to the ## \vec{m} ##.) Thereby, you have successfully showed the necessary result which is ## \vec{F}=(\vec{m} \cdot \nabla ) \vec{B} ##.
 
Last edited:
  • Like
Likes rebc
Charles Link said:
I think your approach is more accurate than the problem statement which needs a dot product in it. And yes, you got the vector identity correct for the gradient of a dot product. ## \vec{m} ## is a constant so vector derivative operations on it are zero. Also ## \nabla \times \vec{B} =0 ## for the steady state where no currents are present. (Comes from Maxwell's ## \nabla \times \vec{B}=\mu_o \vec{J}+\mu_o \epsilon_o \dot{\vec{E}} ## . Any currents from ## \vec{m} ## don't count as part of ## \vec{J} ## because ## \vec{B} ## is the external field applied to the ## \vec{m} ##.) Thereby, you have successfully showed the necessary result which is ## \vec{F}=(\vec{m} \cdot \nabla ) \vec{B} ##.

The problem statement does not necessarily say though that the circuit is a loop. The first equation explicitly states that it applies to a loop in a magnetic dipole. Can I still apply such equation for some circuit where a circuit element of it is under some magnetic field?
And thank you, and yes, $$\vec{F}=(\vec{m}\cdot\nabla)\vec{B}$$
 
rebc said:
The problem statement does not necessarily say though that the circuit is a loop. The first equation explicitly states that it applies to a loop in a magnetic dipole. Can I still apply such equation for some circuit where a circuit element of it is under some magnetic field?
And thank you, and yes, $$\vec{F}=(\vec{m}\cdot\nabla)\vec{B}$$
A magnetic dipole is a loop of current. ## \vec{m}=I \vec{A} ## where ## I ## is the current and ## \vec{A} ## is the area (points normal to the loop), sometimes with an extra constant factor depending upon the system of units. The equation will also work for a loop of current in a circuit, but works better for smaller loops. If the field changes too quickly across the loop/electrical circuit, it's more accurate to then compute the force by integrating ## d\vec{F} =I \, d\vec{l} \times \vec{B} ## around the loop. ## \\ ## The equation also applies to the force on a permanent magnet which is a large (sometimes nearly uniform) distribution of magnetic dipoles throughout the material. The magnetization ## \vec{M} ## is the density of magnetic dipoles per unit volume. As long as the magnetization ## \vec{M} ## is unaffected (approximately) by the applied field, you can use it to compute the force on a permanent magnet in a magnetic field. In this case you need to sum/integrate the forces ## d \vec{F}=(\vec{M} \cdot \nabla) \vec{B} \, d^3x ## over the volume of the magnet.
 
Last edited:
  • Like
Likes rebc
Charles Link said:
A magnetic dipole is a loop of current. ## \vec{m}=I \vec{A} ## where ## I ## is the current and ## \vec{A} ## is the area (points normal to the loop), sometimes with an extra constant factor depending upon the system of units. The equation will also work for a loop of current in a circuit, but works better for smaller loops. If the field changes too quickly across the loop/electrical circuit, it's more accurate to then compute the force by integrating ## d\vec{F} =I \, d\vec{l} \times \vec{B} ## around the loop. ## \\ ## The equation also applies to the force on a permanent magnet which is a large (sometimes nearly uniform) distribution of magnetic dipoles throughout the material. The magnetization ## \vec{M} ## is the density of magnetic dipoles per unit volume. As long as the magnetization ## \vec{M} ## is unaffected (approximately) by the applied field, you can use it to compute the force on a permanent magnet in a magnetic field. In this case you need to sum/integrate the forces ## d \vec{F}=(\vec{M} \cdot \nabla) \vec{B} \, d^3x ## over the volume of the magnet.
Let me edit the last equation to show the ## \vec{x} ##-dependence: ## d\vec{F}=(\vec{M}(\vec{x}) \cdot \nabla )\vec{B}(\vec{x}) \, d^3 \vec{x} ##.
 
  • Like
Likes rebc
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top