favq
- 7
- 0
Homework Statement
The attached figure shows a "shunt feedback amplifier" circuit, and its AC equivalent model.
Verify that:
r_T = \dfrac{v_{out}}{i_{in}}=\dfrac{-R_B}{1+\dfrac{R_B+r_\pi}{(1+\beta)R_C}}
(assuming R_B\gg r_e, where r_\pi=(\beta+1)r_e.)
Homework Equations
In the transistor's AC model, the b-e junction resistance r_\pi is defined as r_\pi=(\beta+1)r_e, where r_e is a very small resistance.
The Attempt at a Solution
Equation for Node 1:
i_{in}=i_b+\dfrac{v_{be}-v_{out}}{R_B}
Since v_{be} = i_br_\pi:
i_{in}=i_b+\dfrac{i_br_\pi-v_{out}}{R_B}
i_{in}=\dfrac{i_b(R_B+r_\pi)-v_{out}}{R_B}
Equation for Node 2:
\dfrac{i_br_\pi-v_{out}}{R_B}=\beta i_b + \dfrac{v_{out}}{R_C}
v_{out} \left ( \dfrac{1}{R_C} + \dfrac{1}{R_B} \right ) = i_b \left ( \dfrac{r_\pi}{R_B} - \beta \right )
Since r_\pi=(\beta+1)r_e:
v_{out} \left ( \dfrac{1}{R_C} + \dfrac{1}{R_B} \right ) = i_b \left ( \dfrac{(\beta+1)r_e}{R_B} - \beta \right )
v_{out} \left ( \dfrac{1}{R_C} + \dfrac{1}{R_B} \right ) = i_b(\beta+1) \left ( \dfrac{r_e}{R_B} - \dfrac{\beta}{\beta+1} \right )
Since R_B\gg r_e, I tried to neglect \dfrac{r_e}{R_B}, making it 0:
v_{out} \left ( \dfrac{1}{R_C} + \dfrac{1}{R_B} \right ) = i_b(\beta+1) \left ( 0 - \dfrac{\beta}{\beta+1} \right )
v_{out} \left ( \dfrac{1}{R_C} + \dfrac{1}{R_B} \right ) = - \beta i_b
v_{out} = -\dfrac{\beta i_bR_BR_C}{R_B+R_C}
Plugging this back into the expression for iin:
i_{in}=\dfrac{i_b(R_B+r_\pi)+\dfrac{\beta i_bR_BR_C}{R_B+R_C}}{R_B}
i_{in}=i_b\left ( \frac{R_B+r_\pi}{R_B}+\dfrac{\beta R_C}{R_B+R_C} \right )
i_{in}=i_b\left ( \frac{(R_B+r_\pi)(R_B+R_C)+\beta R_BR_C}{R_B(R_B+R_C)} \right )
Calculating \dfrac{v_{out}}{i_{in}}:
\dfrac{v_{out}}{i_{in}}=\left (-\dfrac{\beta R_BR_C}{R_B+R_C} \right )\left(\frac{R_B(R_B+R_C)}{(R_B+r_\pi)(R_B+R_C)+\beta R_BR_C} \right )
\dfrac{v_{out}}{i_{in}}=-\frac{R_B(\beta R_BR_C)}{(R_B+r_\pi)(R_B+R_C)+\beta R_BR_C}
\dfrac{v_{out}}{i_{in}}=-\frac{R_B(\beta R_BR_C)}{R_B^2+R_BR_C+R_Br_\pi+R_Cr_\pi+\beta R_BR_C}
\dfrac{v_{out}}{i_{in}}=-\frac{R_B}{\dfrac{R_B}{\beta R_C}+ \dfrac{1}{\beta}+\dfrac{r_\pi}{\beta R_C}+\dfrac{r_\pi}{\beta R_B} +1}
\dfrac{v_{out}}{i_{in}}=-\frac{R_B}{\dfrac{R_B+r_\pi}{\beta R_C}+ \dfrac{1}{\beta}+\dfrac{r_\pi}{\beta R_B} +1}
If I neglect \dfrac{1}{\beta} as 0, and neglect \dfrac{r_\pi}{\beta R_B} = \dfrac{(\beta+1)r_e}{\beta R_B} (since R_B\gg r_e), I get:
\dfrac{v_{out}}{i_{in}}=-\frac{R_B}{\dfrac{R_B+r_\pi}{\beta R_C} +1}
This is very close to the desired result, but not equal. Am I missing something?
Thank you in advance.