Simple Force and Motion Problem - Explain the explanation please.

AI Thread Summary
The discussion revolves around a physics problem involving a conveyor belt system where box A is at the top and box B is at the bottom. The main question is about the time it takes for box A to hit box B if the conveyor belt under A breaks, with a focus on understanding why the time formula includes '2d' instead of 'd'. Participants clarify that the equation for time derives from the kinematic equation for motion under constant acceleration, specifically using the relationship between distance, acceleration, and time. There is also a debate about when to use different equations for motion, emphasizing the importance of understanding initial conditions and acceleration due to gravity and friction. Ultimately, the discussion highlights the complexities of analyzing motion on an incline with friction involved.
tenbee
Messages
15
Reaction score
0

Homework Statement



Half-Passage: In the packing industry, processing packages via conveyor belts is immensely practical and vital for operations. Maintaining packages in a neat and file line is no easy task, considering that many conveyor belts are non-linear and require the traversal of hills and valleys. As a general rule of thumb, boxes are kept no less than 5m apart so that collisions do not occur and skew the entire process. In the following diagram, box A is at the very top of the conveyor belt and box B is at the very bottom. The height of the conveyor belt system is h and the slops of the hill is r.

http://www.mcatquestionaday.com/pictures/080925.gif

Question 2: Assume that the conveyor belt of the incline is distinct and moves separately from the conveyor belt on which B rests. If the conveyor belt underneath A breaks, how long will it take for box A to hit box B assuming that box B remains stationary and the coefficient of kinetic friction of the conveyor belt is 0.4? Also assume that the mass of box A is m. For simplicity, assume that the distance down the ramp is d.

Homework Equations

The Attempt at a Solution



answer: {2d/[gsin(r) - 0.4gcos(r)]}1/2

Okay... I understand how to solve this equation, but I don't understand why it's '2d' instead of 'd'. A little help please : )

To find time...
a = v/t and v= d/t, so a = (d/t)/t
F = ma --> a = F/m
Ffr = µk*Fnorm

So for force --> (mgsinθ - mgcosθ)/m, then cancel the m --> a = (gsinθ - gcosθ)

(d/t)/t = (gsinθ - gcosθ) --> (d/t) = t(gsinθ - gcosθ) --> d = t*t(gsinθ - gcosθ --> d/(gsinθ - gcosθ) = t2 --> [d/(gsinθ - gcosθ)]1/2 = t

Where do they get 2d from?!?
 
Last edited:
Physics news on Phys.org
Try setting a = 1/2 t^2, taken from x(t) = 1/2t^2 + vt + t_0
 
khemist said:
Try setting a = 1/2 t^2, taken from x(t) = 1/2t^2 + vt + t_0

Ahhh, I see - yes that works. Thank you!

When should I use x = x0 + v0t + 1/2at2 versus a = (d/t)/t?
 
x(t) is a position function. It implies constant acceleration and one can use it to determine the time it takes to get from A to B .

I would only use a = d/t^2 when you know the distance interval and time interval. It is really a = (d_2-d_1)/(t_2 - t_1)^2, which gives you an average acceleration.

Someone else might be able to answer that question a little better, I am not 100% on when to use it.
 
Actually the problem is wrong. If A is moving, the conveyor has a velocity v, and when it stops, it makes a get an disacelleration or an acelleration (only if static friction coefficient makes A don't slide in the conveyor, but kinetic does). This way A has a initial velocity v that increases or decreases by time, so the initial velocity is needed. But as the answer says, there is no v, so, assuming that v is TOO short and can be forgotten, we have:

We know the position/time function in the MUV:

\Delta S = Vot - (1/2)at²
Vo=null
\Delta S = (1/2)at²
t=\sqrt{2 \Delta S/a}

But a is the acceleration of gravity in the axe of the conveyor minus the disacxceleration of friction

A = g.sin\alpha - A_{friction}

Fa = N.u = m.g.cos\alpha.u -> Fa = 0.4mgcos\alpha -> A_{ friction} = 0.4gcos\alpha
A = g.sin\alpha - 0.4gcos\alpha
t = \sqrt{ 2\Delta S/g.sin\alpha - 0.4gcos\alpha}

Replace to get answer
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...

Similar threads

Back
Top