- #1
binbagsss
- 1,278
- 11
Homework Statement
I think I am being stupid, I am trying to show that
## \int^{T}_{0} e^i\frac{2\pi(n-m)t}{T} dt = 0 ## [1] if ## n \neq m##
## = T ## if ##n=m##, ##T## the period.
Homework Equations
[/B]
I am using the following ##cos## and ##sin## orthogonal identities:
1) ##\int^{2 \pi / g}_0 sin ( n g x) sin ( m g x ) dx = \delta_{nm} ##
2) ##\int^{2 \pi / g}_0 cos ( n g x) cos ( m g x ) dx = \delta_{nm} ##
3) ##\int^{2 \pi / g}_0 sin ( n g x) cos ( m g x ) dx = \delta_{nm} ##
The Attempt at a Solution
## e^i\frac{2\pi(n-m)t}{T} dt = e^i\frac{2\pi(n)t}{T} . e^i\frac{2\pi(n-m)t}{T} ##
(Let ##g=\frac { 2 \pi i}{T} ##)
##= (cos ( g n t) + i sin (gnt) ).(cos ( g m t) - i sin ( g m t))##
So using the orthogonal identities [1] the contribution to [1] from the ##coscos## and ##sinsin## term gives ##2 \delta _{nm} ##, and then from the cross ##sin## and ##cos## terms I am getting
## i \delta_{nm} - i \delta_{nm} = 0 ##.
So I am getting ## 2 \delta _{nm} ##
Which I can see straight off is wrong since I am not dividing by the period to get the coefficient. (independent of it)
Many thanks in advance.