Simple Harmonic Motion of an earthquake

AI Thread Summary
The discussion revolves around calculating the vertical displacement of a car's suspension during an earthquake, considering the combined mass of the car and four passengers. The frequency of the earthquake is given as 1.60 Hz, leading to resonance conditions that affect the car's oscillation. Key equations related to simple harmonic motion, including those for period, spring constant, and displacement, are utilized to derive the solution. The final calculation indicates that the suspension lifts the car's body by approximately 0.078 meters as the passengers exit. The collaborative effort highlights the importance of correctly applying physics principles to solve real-world problems.
veloix
Messages
46
Reaction score
0
[SOLVED] Simple Harmonic Motion

Homework Statement



Four people, each with mass of 71.1 kg, are in a car with a mass of 1180 kg. An earthquake strikes. The vertical oscillations of the ground surface make the car bounce up and down on its suspension springs, but the driver manages to pull of the road and stop. When the frequency of the shaking is 1.60 Hz, the car exhibits a maximum amplitude of vibration. The earthquake ends and the four people leave the car as fast as they can. By what distance does the car's undamaged suspension lift the car's body as the people get out?

Homework Equations



x=Acos(wt+phi)
T=1/f
w=sqrt(k/m)
T=2pi/w
or 2pisqrt(k/m)
k= 4pi^2m/T^2

The Attempt at a Solution



I have notice that mass must be all added to together to give a total mass of 1446.4 kg. Then I found the period by T= 1/f=1/1.60=0.625s or is it T= 2pi/w= 2pi/1.60=3.93s, ^anyway from that i used K=4pi^2m/T^2 to come up with k constant k=4pi^2(1446.4)/(0.625)^2= 147999 n/m , i don't know soemthing tells me I am not doing this right i don't how i could go about getting the postion. can someone help me out?
 
Physics news on Phys.org
(w means omega.)

When the driving frequency was f=1.6 Hz, there was resonance, which means w^2= k/m => (2*pi*f)^2 = k/M, where M = mass of car+men.

delta_F = k*delta_x => Mg - weight of men = delta_x, which is what you want.
 
hmm some calculations i did from this were w^2=k/m (2*pi*1.6)^2=k/1464.4= 147992.264 K= 101.06*1464.4= 147992.264 n/m ok now i tired your equation delta_F=k*delta_x=> Mg-weight of men= delta_x so (1464.4)(9.80)-(71.1*4)= delta x= 14066.72 this was wrong. I also notice what happen to k?
 
What happened to k was a typo: it should be k*delta_x.

Let's go through the logic once more. The natural frequency of the loaded car must be f =1.6 Hz. That gives us
(2*pi*f)^2 = k/(M+m), where m is the sum of the masses of the four men.

Suppose x1 is the compression when the load is M+m, and x2 when load is M. Then,
(M+m)g – mg = k(x2-x1) => Mg = k*delta_x => delta_x = Mg/[(M+m)(2*pi*f)^2].

(In my last post, I wrote (Mg - wt of men) by mistake.)

I get delta_x as 0.078 m.
 
Last edited:
thanks man that was right. i got same thing :). I appreicate the help.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top