Simple (or not so simple) Momentum question

  • Thread starter Thread starter rm446
  • Start date Start date
  • Tags Tags
    Momentum
AI Thread Summary
The discussion revolves around a momentum problem involving a particle colliding with a much larger mass that is moving perpendicularly to the particle's initial velocity. The key question is whether the particle will gain any velocity in the y direction after the collision or if it will simply bounce back in the negative x direction. Participants note that while the massive object absorbs some energy, the effect on the particle's velocity is likely negligible due to the mass difference. The conversation also touches on the implications of friction and the need for additional equations or principles to fully resolve the problem. Ultimately, it is suggested that momentum and energy conservation alone may not suffice to solve such scattering problems without considering the forces involved.
rm446
Messages
24
Reaction score
0
I've been thinking about basic momentum problems lately I'm having a surprising amount of trouble with one that didn't seem so bad at first glance.

Here's what I'm imagining: We've all heard of the simple momentum problem where a particle moving in the x direction at speed v1 runs into some unmoving object of a much much greater mass. Much like a basketball hitting the Earth, the particle simply bounces off in the negative x direction with the same speed v1.

Now here's the twist that's messing me up. Let's say the giant mass the particle is hitting is moving, but the movement is perpendicular to the particles initial velocity. So say the particle still has initial velocity v1 in the x direction but the giant mass has velocity v2 in the y direction. After the collision, is the particle going to have some velocity in the y direction or will it have the same result as the example I mentioned above?

Another way I've tried to think about it is what would happen if I dropped a basketball on the Earth from a car moving parallel to the Earth's surface? I mean I know what will happen in real life, but if there was no wind or ground friction, and the ball could not deform or rotate, then would it travel at the same speed as the car indefinitely?

Also when I try to do this on paper I find I'm one equation short, I have 2 conversation of momentum equations (for x and y) and conversation of energy, but I have 4 unknowns, the x and y components of speed for both objects (i.e. the basketball and Earth) after the collision.
 
Physics news on Phys.org
Most likely the particle hitting the more massive object will be imparted with some of the perpendicular velocity after bouncing off. The more massive object would absorb some of the energy from the collision and would be pushed slightly in the direction that the particle initially was travelling.

Another way I've tried to think about it is what would happen if I dropped a basketball on the Earth from a car moving parallel to the Earth's surface? I mean I know what will happen in real life, but if there was no wind or ground friction, and the ball could not deform or rotate, then would it travel at the same speed as the car indefinitely?

With no friction it would bounce with the car forever. Without friction there would be no way to transfer some of the forward velocity of the ball to the Earth and cause it to slow down.
 
Thanks for the response. I'm still a little confused though, shouldn't the two examples have the exact same conclusion? I mean friction has no place in a particle collision right? If so,I believe the two problems are identical.

Anyways though I'm tempted to agree that any velocity gained in the particle/basketball by the massive object/Earth is either zero or negligible, but when I can't think of any reason why that should be certain and it's becoming like an itch I can't quite scratch. Even worse, when I tried putting this on paper it was easy to show that the affect of the basketball on the Earth was negligible, but there was nothing to even imply the affect of the Earth on the basketball is or isn't. The momentum equation for the direction of the Earth/massive object's movement when solved for the particle/basketball's final velocity is literally a very small number (the change in the Earth's velocity) times a very large number (the mass of the Earth divided by the mass of the basketball), there's nothing I can draw from that.

I assume these types of elastic collision of two particle questions are common in physics, but when I looked up my intro physics text each example provided some info about the particles after the collision. Is there some fourth relation I'm missing that would let me solve this out?
 
In particle collisions? I don't believe the standard use of friction applies to that honestly. I can't do the math for you, as I don't know it, but I can assure you that when the ball hits the ground it imparts some type of motion into the earth. It is so negligible it really isn't worth talking about usually though. Countering this is that you had to accelerate to get the ball up to speed in the first place, so no net loss of energy or velocity has been lost anywhere I don't think.
 
Momentum and energy conservation are, in general, not enough to solve a scattering problem. They merely provide some insight to the problem. Some knowledge of the forces involved is required.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top