Stantoine
- 4
- 0
Homework Statement
given: dt=-\frac{1}{2}\sqrt{\frac{l}{g}}\frac{d\theta}{\sqrt{sin^2(\alpha/2)-sin^2(\theta/2)}}
make the change of variables sin(\theta/2)=sin(\alpha/2)sin(\phi)
to show that: dt=-\sqrt{\frac{l}{g}}\frac{d\phi}{\sqrt{1-k^2sin^2(\phi)}}
where k=sin(\alpha/2)
Homework Equations
given in (A)
The Attempt at a Solution
Substituting for θ i have gotten to:
dt=-\frac{1}{2}\sqrt{\frac{l}{g}}\frac{d\theta}{\sqrt{k^2-k^2sin^2(\phi)}}
I'm not sure how to go any farther, or how to substitute for dθ
Last edited: