Simplification of the Proca Lagrangian

fabstr1
Messages
4
Reaction score
1
Homework Statement
How do I simplify the Proca lagrangian for a spin-1 field
Relevant Equations
L = -(1/16*pi) * ( ∂^(μ)A^(ν) - ∂^(ν)A^(μ))(∂_(μ)A_(ν) - ∂_(ν)A_(μ)) + 1/(8*pi) * (mc/hbar)^2* A^ν A_ν
Hello,
I'm trying to figure out where the term (3) came from. This is from a textbook which doesn't explain how they do it.

∂_μ(∂L/(∂(∂_μA_ν)) = ∂L/∂A_ν (1)

L = -(1/16*pi) * ( ∂^(μ)A^(ν) - ∂^(ν)A^(μ))(∂_(μ)A_(ν) - ∂_(ν)A_(μ)) + 1/(8*pi) * (mc/hbar)^2* A^ν A_ν (2)

Here is Eq (1) the Euler-Lagrange equation and Eq (2) is the lagrangian for a vector field. In the textbook they just state the term

∂_μ(∂L/(∂(∂_μA_ν)) = -1/(4*pi)*(∂^(μ)A^(ν) - ∂^(ν)A^(μ)) (3)

Where does the term -1/(4*pi) come from, and how do I cancel out the rest of the term so that the equation becomes

∂_μ(∂^(μ)A^(ν) - ∂^(ν)A^(μ)) + (mc/hbar)^2* A^ν (4)

qft.jpg
 
  • Like
Likes JD_PM
Physics news on Phys.org
Hints:

##\mathcal{L}= -\frac{1}{16\pi}F^{\mu\nu}F_{\mu\nu} ##

Now:
##F^{\mu\nu}= \eta^{\mu n}\eta^{\nu m}F_{nm}##

Now use this in above equation and:

##F_{nm}=\partial_n A_m- \partial_m A_n##
And
##F_{nm}= -F_{mn}##
 
  • Like
Likes JD_PM
But what happends to the rest of the term in Eq (10.17), where is the -1/(4*pi) term coming from.

L = - (1/(16*pi)) * η^(μν)η^(νμ)*F_(μν)
 
Last edited:
fabstr1 said:
But what happends to the rest of the term in Eq (10.17), where is the -1/(4*pi) term coming from.

L = - (1/(16*pi)) * η^(μν)η^(νμ)*F_(μν)
Ok. I will do one more step for you.

##\mathcal{L}= \frac{-1}{16\pi} \eta^{\mu n}\eta^{\nu m} F_{nm}F_{\mu\nu}##

Now, taking the differential and applying product rule to above term throws a factor of 2(Due to symmetry of product) so this becomes (Dropping the metric tensors for brevity):

##\partial\mathcal{L}= \frac{-1}{8\pi} F_{nm}\partial F_{\mu\nu}##

Now, use the defination of ##F_{nm}##
 
I haven't taken any tensor calculus before, so I'm not sure if I'm doing it right.

∂L/∂F_{ μν } = - 1/(16*pi) * η^(μν)η^(νμ)*F_(μν)* F_(μν) = - 1/(16*pi)*η^(μν)η^(νμ)* F_(μν)^2 = -1/(8*pi)*η^(μν)η^(νμ)* F_(μν) = - 1/(8*pi)*η^(μν)η^(νμ)*(∂^(μ)A^(ν) - ∂^(ν)A^(μ))
 
I have updated my solution shown below. Is it ok, or is there something that are missing ?

 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top