What do simultaneous eigenkets tell us about the commutativity of A and B?

  • Thread starter Thread starter Lawrencel2
  • Start date Start date
Lawrencel2
Messages
81
Reaction score
0

Homework Statement


If A and B are observables, suppose that the simultaneous eigenkets of A and B, {|a',b'>} form a complete orthonormal set of base kets.
Can we always conclude that [A,B]=0

Homework Equations


A|a'> = a' |a'>
B|b'> = b' |b'>

The Attempt at a Solution


I Honestly don't know where to start.
What does it mean that the are "Simultaneous Eigenkets"?

I do know that it implies that you can take a measurement of both without having to destroy the previous measurement. Everywhere i look seems to start at the opposite end assuming that they commute.
So if someone can explain what "Simultaneous eigenkets" means, I can probably get a bunch further..
I want to figure this out but i can't seem to really even get started.
 
Physics news on Phys.org
It means that you can write ## A|a',b'\rangle=a' |a',b'\rangle ## and ## B|a',b'\rangle=b'|a',b'\rangle ##, which means ##|a',b'\rangle## is the eigenket of both A and B, so their "simultaneous eigenket"!
 
Lawrencel2 said:

Homework Statement


If A and B are observables, suppose that the simultaneous eigenkets of A and B, {|a',b'>} form a complete orthonormal set of base kets.
Can we always conclude that [A,B]=0

Homework Equations


A|a'> = a' |a'>
B|b'> = b' |b'>

The Attempt at a Solution


I Honestly don't know where to start.
What does it mean that the are "Simultaneous Eigenkets"?

I do know that it implies that you can take a measurement of both without having to destroy the previous measurement. Everywhere i look seems to start at the opposite end assuming that they commute.
So if someone can explain what "Simultaneous eigenkets" means, I can probably get a bunch further..
I want to figure this out but i can't seem to really even get started.

|a',b'> is a simultaneous eigenket of both A and B if it's an eigenket of BOTH the operators A and B. I.e. A|a',b'>=a'|a',b'> and B|a',b'>=b'|a',b'>. Think about what the matrix and A and B look like in that basis.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top