Gary Roach
- 20
- 0
Homework Statement
From Principles of Quantum Mechanics, 2nd edition by R Shankar, problem
1.8.10:
By considering the commutator, show that the following Hermitian matrices may be
simultaneously diagonalized. Find the eigenvectors common to both and verify
that under a unitary transformation to this basis, both matrices are
diagonalized.
\textbf{Theorem 13:} If \Omega\ and\ \Lambda are two commuting Hermitian
operators, there exists (at least) a basis of common eigenvectors that diagonalizes them
both.
Homework Equations
\Omega = \begin{vmatrix}<br /> 1 & 0 & 1 \\<br /> 0 & 0 & 0 \\<br /> 1 & 0 & 1<br /> \end{vmatrix}
\Lambda =<br /> \begin{vmatrix}<br /> 2 & 1 & 1\\<br /> 1 & 0 & -1\\<br /> 1 & -1 & 2<br /> \end{vmatrix}
[\Omega , \Lambda] = 0
The Attempt at a Solution
The two matraces definitely meet the requirements of Theorem 13. Next computer
the eigenvalues of \Omega\ and\ \Lambda:
\Omega= \begin{vmatrix}<br /> 1-\omega & 0 & 1 \\<br /> 0 & -\omega & 0 \\<br /> 1 & 0 & 1-\omega<br /> \end{vmatrix} <br /> \ \Rightarrow (1-\omega)^2 (-\omega) + \omega) = 0 \ \Rightarrow \omega = 0, 0,<br /> 2
\Lambda=\begin{vmatrix}<br /> 2-\omega & 1 & 1 \\<br /> 1 & -\omega & -1 \\<br /> 1 & -1 & 2-\omega<br /> \end{vmatrix} <br /> \ \Rightarrow (2-\omega)(\omega^2 -2\omega - 1) -2(2-\omega) = 0 \Rightarrow<br /> \omega = 2, 3, -1
Next computer the eigenvectors:
\Lambda | \omega = 2 >= \begin{vmatrix}<br /> 0 & 1 & 1 \\<br /> 1 & -2 & -1 \\<br /> 1 & -1 & 0<br /> \end{vmatrix} = 0 \Rightarrow x_2 + x_3 = 0\ ;\ x_1 - x_2 = 0 \Rightarrow<br /> x_1= 1, X_2=1, x_3=-1
\Lambda | \omega = 2 >= \begin{vmatrix}1\\1\\-1\end{vmatrix}
\Lambda | \omega = 3 >= \begin{vmatrix}<br /> -1 & 1 & 1 \\<br /> 1 & -3 & -1 \\<br /> 1 & -1 &-1<br /> \end{vmatrix} = 0 \Rightarrow -x_1 + x_2 + x_3 = 0\ ;<br /> x_1 -3x_2 - x_3 = 0\ ;\ x_1 - x_2 - x_3 = 0 \Rightarrow x_1=1, x_2=0, x_3=1
\Lambda | \omega = 3 >= \begin{vmatrix}1\\0\\1\end{vmatrix}
\Lambda | \omega = -1 >= \begin{vmatrix}<br /> 3 & 1 & 1 \\<br /> 1 & 1 & -1 \\<br /> 1 & -1 &3<br /> \end{vmatrix} = 0 \Rightarrow 3x_1 + x_2 + x_3 = 0\ ;<br /> x_1 + x_2 - x_3 = 0\ ;\ x_1 - x_2 + 3x_3 = 0 \Rightarrow x_1=1, x_2=-2, x_3=-1
\Lambda | \omega = -1 >= \begin{vmatrix}1\\-2\\-1\end{vmatrix}
And from \Omega
\Omega | \omega = 0 > = \begin{vmatrix}<br /> 1 & 0 & 1 \\<br /> 0 & 0 & 0 \\<br /> 1 & 0 & 1<br /> \end{vmatrix} = 0 \Rightarrow x_1 + x_3 = 0\ ;\ x_2=0 <br /> \Rightarrow x_1=1, x_2=-0, x_3=-1
\Omega | \omega = 0 >= \begin{vmatrix}1\\0\\-1\end{vmatrix} twice
\Omega | \omega = 2 > = \begin{vmatrix}<br /> -1 & 0 & 1 \\<br /> 0 & -2 & 0 \\<br /> 1 & 0 & -1<br /> \end{vmatrix} $ = 0 \Rightarrow -x_1 + x_3 = 0\ ;\ x_2=0<br /> \Rightarrow x_1=1, x_2=-0, x_3=1<br /> <br /> \Omega | \omega = 2 &gt;= \begin{vmatrix}1\\0\\1\end{vmatrix}<br /> <br /> In summary the eigenvectors are:<br /> <br /> \begin{vmatrix}1\\1\\-1\end{vmatrix} , <br /> \begin{vmatrix}1\\0\\1\end{vmatrix} , <br /> \begin{vmatrix}1\\-2\\-1\end{vmatrix} , <br /> \begin{vmatrix}1\\0\\-1\end{vmatrix} , <br /> \begin{vmatrix}1\\0\\1\end{vmatrix} <br /> <br /> And here is the problem. There is no way to build a unitary matrix (say<br /> \textbf{U}) from these vectors. All possible combinations lead to non-Hemitian<br /> matrices. With out a unitary matrix the diagonalization process -<br /> \textbf{U} \varLambda \textbf{U}^\dagger= diagonalized matrix - can not be<br /> completed.<br /> <br /> Where have I gone wrong?
Last edited: