Sin+cos solution undetermined coeff. de

  • Thread starter Thread starter EvLer
  • Start date Start date
AI Thread Summary
The discussion revolves around solving the differential equation y'' + 16y = 24 cos(4x) using the method of undetermined coefficients. The user correctly identifies the homogeneous solution as y = c1e^(i4x) + c2e^(-i4x) and proposes a particular solution of the form y = x(Acos(4x) + Bsin(4x)). After differentiating and substituting back into the equation, they find that the coefficients lead to A = 0 and B = 3, resulting in the particular solution y(p) = 3x sin(4x). The user concludes that their solution aligns with another's, revealing that the book's answer was incorrect.
EvLer
Messages
454
Reaction score
0
This looks like a very simple one, but i ran out of ideas. I do not get the answer and unlikely will get it without some help:

y'' + 16y = 24 cos(4x)

I found homogeneous solution:

y = c1ei4 + c2e-i4

I haven't re-written it using euler's formula yet.
So, for particular solution the general form is:

y = x(Acos(4x) + Bsin(4x))

I differentiated it and plugged into the DE and here's what i have:

-8Asin(4x) + 8Bcos(4x) + xsin(4x)*[16A - 16B] + xcos(4x)*[16B - 16A] = 24cos(4x);

It seems like last two terms need to go away, but then A = B and to get rid of the sin A = 0! the answer is totally different though.
Where am i going wrong?

Thanks for any hints.

EDIT: or would yp = x2(Acos(4x) + Bsin(4x))
I'm confused... :confused: i can't work it out with x2 either ...
 
Last edited:
Physics news on Phys.org
I find the last two terms do cancel

y = x(Acos(4x) + Bsin(4x))

y' = Acos(4x) + Bsin(4x) + x (-4Asin(4x) + 4Bcos(4x))

y" = -4Asin(4x) + 4Bcos(4x) -4Asin(4x) + 4Bcos(4x) + x (-16Acos(4x) - 16Bsin(4x))

Putting back into the equation y" + 16y = 24cos(4x) gives

-4Asin(4x) + 4Bcos(4x) -4Asin(4x) + 4Bcos(4x) + x (-16Acos(4x) - 16Bsin(4x))

+ 16 ( x(Acos(4x) + Bsin(4x)) ) = 24 cos(4x)

Here we are left with

-8Asin(4x) + 8Bcos(4x) = 24 cos(4x)

so B = 3 and A = 0

so a

y(p) = 3x sin(4x)
 
Thanks for reply.
that was my "other" solution. Good thing it matched yours. Come to find out: the book answer was wrong :mad:
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top