Sin+cos solution undetermined coeff. de

  • Thread starter Thread starter EvLer
  • Start date Start date
AI Thread Summary
The discussion revolves around solving the differential equation y'' + 16y = 24 cos(4x) using the method of undetermined coefficients. The user correctly identifies the homogeneous solution as y = c1e^(i4x) + c2e^(-i4x) and proposes a particular solution of the form y = x(Acos(4x) + Bsin(4x)). After differentiating and substituting back into the equation, they find that the coefficients lead to A = 0 and B = 3, resulting in the particular solution y(p) = 3x sin(4x). The user concludes that their solution aligns with another's, revealing that the book's answer was incorrect.
EvLer
Messages
454
Reaction score
0
This looks like a very simple one, but i ran out of ideas. I do not get the answer and unlikely will get it without some help:

y'' + 16y = 24 cos(4x)

I found homogeneous solution:

y = c1ei4 + c2e-i4

I haven't re-written it using euler's formula yet.
So, for particular solution the general form is:

y = x(Acos(4x) + Bsin(4x))

I differentiated it and plugged into the DE and here's what i have:

-8Asin(4x) + 8Bcos(4x) + xsin(4x)*[16A - 16B] + xcos(4x)*[16B - 16A] = 24cos(4x);

It seems like last two terms need to go away, but then A = B and to get rid of the sin A = 0! the answer is totally different though.
Where am i going wrong?

Thanks for any hints.

EDIT: or would yp = x2(Acos(4x) + Bsin(4x))
I'm confused... :confused: i can't work it out with x2 either ...
 
Last edited:
Physics news on Phys.org
I find the last two terms do cancel

y = x(Acos(4x) + Bsin(4x))

y' = Acos(4x) + Bsin(4x) + x (-4Asin(4x) + 4Bcos(4x))

y" = -4Asin(4x) + 4Bcos(4x) -4Asin(4x) + 4Bcos(4x) + x (-16Acos(4x) - 16Bsin(4x))

Putting back into the equation y" + 16y = 24cos(4x) gives

-4Asin(4x) + 4Bcos(4x) -4Asin(4x) + 4Bcos(4x) + x (-16Acos(4x) - 16Bsin(4x))

+ 16 ( x(Acos(4x) + Bsin(4x)) ) = 24 cos(4x)

Here we are left with

-8Asin(4x) + 8Bcos(4x) = 24 cos(4x)

so B = 3 and A = 0

so a

y(p) = 3x sin(4x)
 
Thanks for reply.
that was my "other" solution. Good thing it matched yours. Come to find out: the book answer was wrong :mad:
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top