What is the rational function with a slant asymptote of y = 2x + 1?

  • Thread starter Thread starter lostfan176
  • Start date Start date
  • Tags Tags
    Asymptote
lostfan176
Messages
33
Reaction score
0
1. Homework Statement

find the rational function with the slant asymptote of y = 2x + 1


2. The attempt at a solution

(2x +1) + something over something
 
Physics news on Phys.org
There's no unique rational function. There's tons of them. Start with y=2x+1 and add a fraction that goes to zero as x->infinity (or where ever you want your asymptote).
 
thz i figured it out it sid make up a functions but thanks anyway
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top