TrickyDicky
- 3,507
- 28
Matterwave said:You should realize from that formula, however, that the exterior derivative itself is fully compatible with the connection since you can express it as either partial derivatives or covariant derivatives.
Yes, I realize that, the exterior derivative itself is, but I'm concerned about d^2=0 being the case in the presence of a non-flat connection. If the space is curved one must take into account the curvature form and the exterior derivatives turn into exterior covariant derivatives D and D^2≠0, or at least that is my understanding, so we have a curved space with a connection (the Levi-Civita conn.) that being metric compatible measures the curvature of the manifold and according to the pages of wikipedia mentioned by me and quasar987 (or at least what I infer from them) the dd=0 property would be equivalent to the condition of flat vector bundle connection, which if the manifold is curved and we are using the Levi-civita connection wouldn't be the case, right?
Please if you are versed in exterior calculus and curved connections, could you clarify this?