VinnyCee
- 486
- 0
The 30 lb box A is released from rest and slides down along the smooth ramp and onto the surface. Determine the distance s from the end of the surface to where the box stops. The coefficient of kinetic friction between the cart and the box is \mu_k\,=\,0.6.
http://img224.imageshack.us/img224/8509/problem14343jq.jpg
Here is what I have so far:
-W\,\Delta\,y\,=\,(-30\,lb)\,(-4\,ft)\,=\,120\,ft\,lb
\sum\,F_y\,=\,N\,-\,W\,=\,0\,\Rightarrow\,N\,=\,W\,=\,30\,lb
\sum\,F_x\,=\,-f_k\,=\,m\,a_x\,\Rightarrow\,-\mu_k\,N\,=\,m\,a_x
(-0.6)\,(30\,lb)\,=\,(0.932)\,a_x
a_x\,=\,\frac{-18.6}{0.932}\,=\,-19.3\,\frac{ft}{s^2}
Now what?
I know I need to find v_f and the bottom of the hill and I am probably supposed to use a work-energy equation?
\sum\,T_1\,+\,\sum\,U_{1\,-\,2}\,=\,\sum\,T_2
Please help, thanks.
http://img224.imageshack.us/img224/8509/problem14343jq.jpg
Here is what I have so far:
-W\,\Delta\,y\,=\,(-30\,lb)\,(-4\,ft)\,=\,120\,ft\,lb
\sum\,F_y\,=\,N\,-\,W\,=\,0\,\Rightarrow\,N\,=\,W\,=\,30\,lb
\sum\,F_x\,=\,-f_k\,=\,m\,a_x\,\Rightarrow\,-\mu_k\,N\,=\,m\,a_x
(-0.6)\,(30\,lb)\,=\,(0.932)\,a_x
a_x\,=\,\frac{-18.6}{0.932}\,=\,-19.3\,\frac{ft}{s^2}
Now what?
I know I need to find v_f and the bottom of the hill and I am probably supposed to use a work-energy equation?
\sum\,T_1\,+\,\sum\,U_{1\,-\,2}\,=\,\sum\,T_2
Please help, thanks.
Last edited by a moderator: