Solve for F: Find f(x+y)=f(x)(a-y) + f(y)f(a-x), f(0)=1/2

  • Thread starter Thread starter Penultimate
  • Start date Start date
  • Tags Tags
    Function
Penultimate
Messages
26
Reaction score
0
Find all the fumction F: R\rightarrowR So that :
1) f(x+y)=f(x)(a-y) + f(y)f(a-x)
2)f(0)=1/2

I don`t know if i posted in the right place , but if not please moderators send me an email.
Thanks...
 
Physics news on Phys.org
Penultimate said:
Find all the fumction F: R\rightarrowR So that :
1) f(x+y)=f(x)(a-y) + f(y)f(a-x)
2)f(0)=1/2

I don`t know if i posted in the right place , but if not please moderators send me an email.
Thanks...

I suppose a is a given constant and first rule is for all x, y from R.

First assume x=y=0: 1/2 = 1/2 a + 1/2 f(a) \Rightarrow f(a) = 1-a (1)
Then x=0 and y=a: f(a) = 1/2 . 0 + f(a)2 \Rightarrow f(a) = 0 or 1 (2)
f(a) can't be 1, because then according (1) a=0 and f(0) is 1/2.
Let's assume x=a and y=0: f(a) = f(a)2 + 1/4 and f(a)=0 \Rightarrow 0=1/4

This function can't exist.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top