Solve Integral (5): Help on Tricky Calculation Needed

  • Thread starter Thread starter Grand
  • Start date Start date
  • Tags Tags
    Integral
Grand
Messages
74
Reaction score
0

Homework Statement


Could anyone show me how integral (5) in this document is calculated. I've been trying and trying but nothing good came out.

\theta=\frac{\rho}{R}\int\sqrt{\frac{R^2-r^2}{r^2-\rho^2}}\frac{dr}{r}=
=\arctan\left(\frac{R}{\rho}\sqrt{\frac{r^2-\rho^2}{R^2-r^2}\right)-\frac{\rho}{R}\arctan\sqrt{\frac{r^2-\rho^2}{R^2-r^2}

Thank you in advance.


Homework Equations





The Attempt at a Solution

 
Last edited:
Physics news on Phys.org
Hi, the article is not free to view. Please, write the integral yourself, or post a screenshot from the article containing it.
 
Thank you, fixd it.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top