Solve Integral Problem: Evaluate $\displaystyle\int^{1}_{0}{\sqrt{x^2+1}}$

  • Thread starter Thread starter imranq
  • Start date Start date
  • Tags Tags
    Integral
imranq
Messages
57
Reaction score
1

Homework Statement


Evaluate $\displaystyle\int^{1}_{0}{\sqrt{x^2+1}}$


Homework Equations





The Attempt at a Solution


By trigonometric substitution: $x = \tan{\theta} \rightarrow dx = \sec^2{\theta}\,d\theta$<br /> \[\int^{\frac{\pi}{4}}_{0}{\sec^2{x}\sqrt{\tan^2{\theta}+1}}\,d\theta = \int^{\frac{\pi}{4}}_{0}{\sec^3{\theta}}\,d\theta\]<br /> \[= \int^{\frac{\pi}{4}}_{0}{\sec{\theta}\tan^2{\theta}+\sec{\theta}}\,d\theta\]

This is where I get stuck
 
Physics news on Phys.org
imranq said:
\int^{\frac{\pi}{4}}_{0}{\sec^2{\theta}\sqrt{\tan^2{\theta}+1}}\,d\theta = \int^{\frac{\pi}{4}}_{0}{\sec^3{\theta}}\,d\theta\]<br /> \[= \int^{\frac{\pi}{4}}_{0}{\sec{\theta}\tan^2{\theta}+\sec{\theta}}\,d\theta\]

This is where I get stuck

Hi imranq! :smile:

(have a theta: θ and a squared: ² and a cubed: ³ :smile:)

Hint: (d/dθ)(secθ tanθ) = … ? :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top