imranq
- 57
- 1
Homework Statement
Evaluate $\displaystyle\int^{1}_{0}{\sqrt{x^2+1}}$
Homework Equations
The Attempt at a Solution
By trigonometric substitution: $x = \tan{\theta} \rightarrow dx = \sec^2{\theta}\,d\theta$<br /> \[\int^{\frac{\pi}{4}}_{0}{\sec^2{x}\sqrt{\tan^2{\theta}+1}}\,d\theta = \int^{\frac{\pi}{4}}_{0}{\sec^3{\theta}}\,d\theta\]<br /> \[= \int^{\frac{\pi}{4}}_{0}{\sec{\theta}\tan^2{\theta}+\sec{\theta}}\,d\theta\]
This is where I get stuck