Solve Integral Problem: \int^{\frac{2\pi}{a}}_{0} dx dy dz

  • Thread starter Thread starter Petar Mali
  • Start date Start date
  • Tags Tags
    Integral
Petar Mali
Messages
283
Reaction score
0

Homework Statement



I need to calculate integral
<br /> \int^{\frac{2\pi}{a}}_{0}\int^{\frac{2\pi}{a}}_{0} \int^{\frac{2\pi}{a}}_{0}\frac{1}{\sqrt{1-\frac{(cosxa+cosya+cosza)^2}{9}}}ctgh(\frac{6SJ\sq rt{1-\frac{(cosxa+cosya+cosza)^2}{9}}}{2T})dxdydz<br />

a,S,J are constants different then 0 .

Homework Equations


The Attempt at a Solution



N[\int^{\frac{2\pi}{a}}_{0}\int^{\frac{2\pi}{a}}_{0}\int^{\frac{2\pi}{a}}_{0}\frac{Coth[\frac{6SJ\sqrt{1-\frac{(Cos[x a]+Cos[y a]+Cos[z a])^2}{9}}}{2T}]}{\sqrt{1-\frac{(Cos[x a]+Cos[y a]+Cos[z a])^2}{9}}}dxdydz]

I try also to define a>0 but Mathematica don't give a result. Where is a problem? How can I dodefine this? Thanks for your answer.
 
Physics news on Phys.org
I try but don't succeed!
 

Attachments

Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top