debro5
- 5
- 0
I have this system :
(A_1 \quad A_2 \quad A_3 \;...)\left( {\matrix{<br /> {b_1 } \cr <br /> {b_2 } \cr <br /> {b_3 } \cr <br /> {...} \cr <br /> } } \right) = C
where the A's are matrices that forms a vector, b is a vector and C a matrix. If I know C and the A's. How can I find the b's?
\left( {\matrix{<br /> {b_1 } \cr <br /> {b_2 } \cr <br /> {b_3 } \cr <br /> {...} \cr <br /> <br /> } } \right) = (A_1^{ - 1} \quad A_2^{ - 1} \quad A_3^{ - 1} \;...)C<br />
Surely not, this give another matrix. The A's are square but not necessarely invertable...
(A_1 \quad A_2 \quad A_3 \;...)\left( {\matrix{<br /> {b_1 } \cr <br /> {b_2 } \cr <br /> {b_3 } \cr <br /> {...} \cr <br /> } } \right) = C
where the A's are matrices that forms a vector, b is a vector and C a matrix. If I know C and the A's. How can I find the b's?
\left( {\matrix{<br /> {b_1 } \cr <br /> {b_2 } \cr <br /> {b_3 } \cr <br /> {...} \cr <br /> <br /> } } \right) = (A_1^{ - 1} \quad A_2^{ - 1} \quad A_3^{ - 1} \;...)C<br />
Surely not, this give another matrix. The A's are square but not necessarely invertable...
Last edited by a moderator: