Solve Problem: Partition Function for Magnetic Moment

Joe Cool
Messages
17
Reaction score
3
Hi,
maybe someone can help me with this problem?

Homework Statement


A system consist of N Atoms that have a magnetic moment m. The Hamiltonian in the presence of a magnetic field H is
$$\mathcal{H}(p,q) - mH \sum_{i=1}^N cos(\alpha_{i})$$
where ##\alpha_i## is the angle between the magnetic field and the atom i.

Show that the induced magnetisationt M is:
$$M=Nm\coth(\theta-\frac 1 \theta), \theta=\frac {mH}{ k_BT}$$

Homework Equations


Magnetisation ##M=-\frac {\partial F} {\partial H}##
Free energy ##F=-k_B\ln(Z)##

The Attempt at a Solution


##Z=Z_{mech}* Z_{magn}##
I don't know how to calculate the magnetic partition function.
 
Physics news on Phys.org
This problem I think is problem (7.14) in Reif's Fundamentals of Statistical and Thermal Physics. Reif gives a hint for the probability being around the angle ## \alpha_i ## (he calls it ## \theta ## ) : In the absence of a magnetic field, the probability that the magnetic moment is between ## \theta ## and ## \theta + d \theta ## is proportional to the differential solid angle ## d \Omega=2 \pi sin(\theta) d \theta ## covered by this ## d \theta ##, and in the presence of a magnetic field this will be weighted by the factor ## e^{-E/(kT)} ##, where ## E ## is the magnetic energy for the angle ## \theta ##.
 
  • Like
Likes Joe Cool
Thanks a lot, now I get it :-)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top