Solve the given problem that involves Probability

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
SUMMARY

The discussion focuses on calculating the probability of at least one of the first three days being wet, using the formula P(at least one of the first three days is wet) = 1 - P(ddd) = 1 - (0.6 × 0.7 × 0.7) = 0.706. The alternative method involves summing the probabilities of all combinations of wet and dry days, which is more complex and prone to omission errors. The consensus is that the complement approach is more efficient and less error-prone.

PREREQUISITES
  • Understanding of basic probability concepts
  • Familiarity with complementary probability
  • Knowledge of binomial coefficients
  • Ability to perform basic arithmetic operations with decimals
NEXT STEPS
  • Study the concept of complementary probability in depth
  • Learn about binomial probability distributions
  • Practice calculating probabilities using different methods
  • Explore advanced probability topics such as conditional probability
USEFUL FOR

Students, educators, and professionals in mathematics, statistics, or data science who are looking to enhance their understanding of probability calculations and methodologies.

chwala
Gold Member
Messages
2,828
Reaction score
420
Homework Statement
See attached;
Relevant Equations
Probability
I may seek an alternative approach; actually i had thought that this would take a few minutes of my time..but just realized that it just takes a minute; My interest is only on highlighted part.

1677496127148.png


Text solution

1677496186076.png


My take;

##P(\text{at least one of the first three days is wet})=1-P(ddd)##
=## 1-(0.6×0.7×0.7)=0.706##

Of course the other way of doing it would also realize the same result but will need more time...i.e using
##P(www)+P(wwd)+P(wdw)+P(wdd)+P(dww)+...P(ddw)=0.706##

Cheers man!
 
Last edited by a moderator:
Physics news on Phys.org
chwala said:
My take;
##P(\text{at least one of the first three days is wet})=1-P(ddd)##
=## 1-(0.6×0.7×0.7)=0.706##
IMO, the approach above is the better approach. It uses the idea that the complement of "at least one day of the three is wet" is "none of the three days is wet." The probabilities of these two events has to add to 1.
chwala said:
Of course the other way of doing it would also realize the same result but will need more time...i.e using
##P(www)+P(wwd)+P(wdw)+P(wdd)+P(dww)+...P(ddw)=0.706##
The latter approach is trickier to get right in that you have to ensure that you have included all possible events in which one, two, or three of the days is wet. In the probabilities that you list, you have omitted one. These come from the following combinations.
3 wet days: ##\binom {3}{3} = 1## -- www
2 wet days: ##\binom{3}{2} = 3## -- wwd, wdw, dww
1 wet day: ##\binom{3}{1} - 3## -- wdd, dwd, ddw
 
  • Like
Likes   Reactions: chwala
Mark44 said:
IMO, the approach above is the better approach. It uses the idea that the complement of "at least one day of the three is wet" is "none of the three days is wet." The probabilities of these two events has to add to 1.
The latter approach is trickier to get right in that you have to ensure that you have included all possible events in which one, two, or three of the days is wet. In the probabilities that you list, you have omitted one. These come from the following combinations.
3 wet days: ##\binom {3}{3} = 1## -- www
2 wet days: ##\binom{3}{2} = 3## -- wwd, wdw, dww
1 wet day: ##\binom{3}{1} - 3## -- wdd, dwd, ddw
Actually, I didn't omit...I just indicated the sum total from the first to last term... would yield same result. Apologies for confusion.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
946
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
2
Views
2K