Solve the given problem that involves Probability

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
The discussion focuses on calculating the probability that at least one of the first three days is wet. The preferred method involves using the complement rule, where the probability of at least one wet day is calculated as 1 minus the probability of no wet days, resulting in a value of 0.706. An alternative approach, which involves summing the probabilities of all possible combinations of wet and dry days, is acknowledged but deemed more complex and prone to omissions. The conversation highlights the importance of ensuring all combinations are considered in probability calculations. Overall, the complement method is favored for its simplicity and efficiency.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached;
Relevant Equations
Probability
I may seek an alternative approach; actually i had thought that this would take a few minutes of my time..but just realized that it just takes a minute; My interest is only on highlighted part.

1677496127148.png


Text solution

1677496186076.png


My take;

##P(\text{at least one of the first three days is wet})=1-P(ddd)##
=## 1-(0.6×0.7×0.7)=0.706##

Of course the other way of doing it would also realize the same result but will need more time...i.e using
##P(www)+P(wwd)+P(wdw)+P(wdd)+P(dww)+...P(ddw)=0.706##

Cheers man!
 
Last edited by a moderator:
Physics news on Phys.org
chwala said:
My take;
##P(\text{at least one of the first three days is wet})=1-P(ddd)##
=## 1-(0.6×0.7×0.7)=0.706##
IMO, the approach above is the better approach. It uses the idea that the complement of "at least one day of the three is wet" is "none of the three days is wet." The probabilities of these two events has to add to 1.
chwala said:
Of course the other way of doing it would also realize the same result but will need more time...i.e using
##P(www)+P(wwd)+P(wdw)+P(wdd)+P(dww)+...P(ddw)=0.706##
The latter approach is trickier to get right in that you have to ensure that you have included all possible events in which one, two, or three of the days is wet. In the probabilities that you list, you have omitted one. These come from the following combinations.
3 wet days: ##\binom {3}{3} = 1## -- www
2 wet days: ##\binom{3}{2} = 3## -- wwd, wdw, dww
1 wet day: ##\binom{3}{1} - 3## -- wdd, dwd, ddw
 
Mark44 said:
IMO, the approach above is the better approach. It uses the idea that the complement of "at least one day of the three is wet" is "none of the three days is wet." The probabilities of these two events has to add to 1.
The latter approach is trickier to get right in that you have to ensure that you have included all possible events in which one, two, or three of the days is wet. In the probabilities that you list, you have omitted one. These come from the following combinations.
3 wet days: ##\binom {3}{3} = 1## -- www
2 wet days: ##\binom{3}{2} = 3## -- wwd, wdw, dww
1 wet day: ##\binom{3}{1} - 3## -- wdd, dwd, ddw
Actually, I didn't omit...I just indicated the sum total from the first to last term... would yield same result. Apologies for confusion.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...