You're right, that would probably work. I'll give it a go. Thanks for your help!
Alternatively, I figured out how to reduce it:
<br />
\int_{-\infty}^{\infty} \frac{\sin^4{x}}{x^2}\, dx = \int_{-\infty}^{\infty} \frac{4 \sin^3{x} \cos{x}}{x}\, dx<br />
(IBP)
<br />
= \int_{-\infty}^{\infty} \frac{\sin{2x}(1 - \cos{2x})}{x}\, dx<br />
(trig identities)
<br />
= \int_{-\infty}^{\infty} \frac{\sin{2x}}{x}\, dx - \int_{-\infty}^{\infty} \frac{\sin{4x}}{2x}\, dx<br />
<br />
= \int_{-\infty}^{\infty} \frac{\sin{x}}{x}\, dx - \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin{x}}{x}\, dx<br />
(change of variables)
<br />
= \pi - \frac{\pi}{2}<br />
(sinc integral)