VinnyCee
- 486
- 0
Solve u = 2x - 3y & v = -x + y in terms of x & y, then find Jacobian.
Here is the problem:
Solve the system u = 2x\;-\;3y,\;\;v = -x\;+\;y for x and y in terms of u and v. Then find the Jacobian \frac{\partial\left(x,\;y\right)}{\partial\left(u,\;v\right)}.
Find the image under the trasformation u = 2x\;-\;3y,\;\;v = -x\;+\;y of the parallelogram R in the xy-plane with boundries x = -3,\;\;x = 0,\;\;y = x\;and\;y = x\;+\;1
Here is what I have:
y = -u\;-\;2v\;and\;x = -u\;-\;3v I am not sure of these answers.
Assuming those are correct, I get the Jacobian to be -2. This is where I am stuck, how do I do the second part? I can get the v-values to be 0\;and\;1 here,
y = x\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;y = x\;+\;1
-2v\;-\;u = -3v\;-\;u\;\;\;\;\;-2v\;-\;u = -3v\;-\;u\;+\;1
v = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;v = 1
But when I try and do the last part for the u values, I get u = u\;+\;3, which is impossible becaus then 0 = 3.
Please help!
Here is the problem:
Solve the system u = 2x\;-\;3y,\;\;v = -x\;+\;y for x and y in terms of u and v. Then find the Jacobian \frac{\partial\left(x,\;y\right)}{\partial\left(u,\;v\right)}.
Find the image under the trasformation u = 2x\;-\;3y,\;\;v = -x\;+\;y of the parallelogram R in the xy-plane with boundries x = -3,\;\;x = 0,\;\;y = x\;and\;y = x\;+\;1
Here is what I have:
y = -u\;-\;2v\;and\;x = -u\;-\;3v I am not sure of these answers.
Assuming those are correct, I get the Jacobian to be -2. This is where I am stuck, how do I do the second part? I can get the v-values to be 0\;and\;1 here,
y = x\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;y = x\;+\;1
-2v\;-\;u = -3v\;-\;u\;\;\;\;\;-2v\;-\;u = -3v\;-\;u\;+\;1
v = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;v = 1
But when I try and do the last part for the u values, I get u = u\;+\;3, which is impossible becaus then 0 = 3.
Please help!
Last edited: