Proving the Natural Logarithm Property: ln(e)=1

  • Thread starter Thread starter applegatecz
  • Start date Start date
applegatecz
Messages
14
Reaction score
0

Homework Statement


Show that ln(e)=1.


Homework Equations


ln(x)=antiderivative from 1 to x of dt/t


The Attempt at a Solution


I assume we have to use the fact that e= lim as n->infinity of (1+1/n)^n, and perhaps can apply l'Hopital's rule to transform that limit -- but I'm not sure where to go from there.
 
Physics news on Phys.org
If e = \lim_{n \to \infty}(1 + \frac{1}{n})^n, then we know that ln(e) = \lim_{n \to \infty}(n)ln(1 + \frac{1}{n}). Now put this in a form where you can apply L'Hospital's Rule.
 
Ah, I see! Thank you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top