Solving a Probability Problem for Thermodynamics: Stirling's Approximation

jessawells
Messages
18
Reaction score
0
i'm stuck trying to figure out this probabilities problem for my thermodynamics class. the question is:

consider an idealized drunk, restricted to walk in one dimension (eg. back and forward only). the drunk takes a step every second, and each pace is the same length. let us observe the drunk in discrete timesteps, as they walk randomly - with equal probability - back or forward.

a) suppose we have 2 non-interacting drunks who start out in the same location. What is the probability that the drunks are a distance A apart after M timesteps? (use stirling's approximation if you need to)

b)suppose instead that the 2 drunks started a distance L apart. Find the probability that the drunks meet at precisely the Mth timestep.


i know that the probability of a binary model system is given by:
P = multiplicity of system / total # of accessible states
= g (M, s) / 2^M

where g is the multiplicity and s is the spin excess (# of forward steps - # of backward steps")

= M! / [(1/2M+s)! (1/2M-s)! 2^M]

using stirling's approx. for large M, this becomes,

P (M,s) = sqrt[2/M(pi)] exp[-2s^2/M]


i'm not sure where to go from here and I'm really confused. the formula i wrote takes care of the M timesteps, but how do i factor in the distance A? how should i go about doing this question? I would appreciate any help. Thanks.
 
Mathematics news on Phys.org
"Thinks in Head"

Let's try this from drunk 1's frame.
Drunk 2 can either move 0 relative, 2 relative, or -2 relative. There's a 1/2 chance of 0 and a 1/4 chance for each 2.
So half the time he doesn't move relative to you, a quarter of the time he moves away (assuming he isn't at the same spot) and the other quarter he moves closer.

Interesting...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top