Solving a trascedental equation

  • Thread starter Thread starter dingo_d
  • Start date Start date
dingo_d
Messages
199
Reaction score
0

Homework Statement



I have solved the problem of an infinite square well with a delta potential in the middle, what I got in the end is:

\cot(\frac{\sqrt{2 m E}}{\hbar}a)=-\frac{\Omega\hbar a \sqrt{2m E}}{2mE a}
, where a is the width of the well, m the mass of the particle in it, E the energy eigenvalue, and \Omega some parameter that was with the delta potential.

Now I need to solve that equation and I have no idea how to do that :\

I'm not much of a numerical solver :\

Anywho the solution to Schrodinger eq. is:

u_n^+(x) =<br /> \begin{cases}<br /> A\sin(k_n^+(x+a)) &amp; \text{if } -a\leq x &lt; 0 \\<br /> -A\sin(k_n^+(x-a)) &amp; \text{if } 0&lt; x \leq a<br /> \end{cases}

And the k_n^+=\frac{n\pi}{2a}, where n=\pm 2,\pm 4,\ldots
 
Physics news on Phys.org
You can use Newton's method:

http://en.wikipedia.org/wiki/Newton's_method

Just turn your equation into f(E) =0 and use Newton's method to find the roots. It usually helps to have a sketch of the function to determine good starting points.
 
Hmmm so I've set
f(ka)=\cot(ka)+\frac{\Omega}{ka} and then with Mathematica I've made:
x_{n+1}=x_n+\frac{f(ka)}{f&#039;(ka)} and no matter what parameter I choose the solution doesn't converge :\

Now I dk if I'm doing sth wrong or not...
 
dingo_d said:
Hmmm so I've set
f(ka)=\cot(ka)+\frac{\Omega}{ka} and then with Mathematica I've made:
x_{n+1}=x_n+\frac{f(ka)}{f&#039;(ka)} and no matter what parameter I choose the solution doesn't converge :\

Now I dk if I'm doing sth wrong or not...

There's a sign wrong in your iteration, it should be

x_{n+1}=x_n-\frac{f(x_n)}{f&#039;(x_n)}

If you are using Mathematica, you can plot to get good starting points for Newton's method. You could also probably get a list of roots directly with Mathematica.
 
Oh, I've found it, I just hope it's right thing :D Thanks ^^
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top