Solving Algebraic Problem to Calculate Vector Operator Rotation

IsNoGood
Messages
5
Reaction score
0

Homework Statement


I'm trying to comprehend
\hat{P}_t^{-1} \left( \vec{\sigma} \cdot \vec{A} \right) \hat{P}_t = \<br /> \cos{\Psi\left(t\right)}\left( \vec{\sigma} \cdot \vec{A} \right) - \sin{\Psi\left(t\right)} \sigma \cdot \left[ \hat{a}\left(t\right) \times \vec{A} \right] + 2\sin^2{\frac{\Psi\left(t\right)}{2}} \left[ \hat{a}\left(t\right)\cdot\vec{A} \right]\left[\vec{\sigma}\cdot\hat{a}\left(t\right)\right]<br />
with \vec{\sigma} as the usual vector of pauli matrices, \vec{A} as an (more or less) arbitrary operator vector and \hat{a} as the axis of the rotation represented by \hat{P}_t.

Homework Equations


I already know \left[ \vec{\sigma},\vec{A} \right]_- = \left[ \vec{\sigma},\hat{a} \right]_- = \left[ \hat{a},\vec{A} \right]_- = 0.

Further on, the following identities are given (time dependencies \left(t\right) omitted):
(I) <br /> \hat{P}_t = \cos{\frac{\Psi}{2}} - i\left(\vec{\sigma}\cdot\hat{a}\right) \sin{\frac{\Psi}{2}}<br />
(II) <br /> \left( \vec{m}\cdot\vec{\sigma} \right) \left( \vec{n}\cdot\vec{\sigma} \right) = \<br /> \vec{m}\cdot\vec{n} + i\vec{\sigma} \cdot \left( \vec{m} \times \vec{n} \right)<br />
(III) <br /> \vec{m}\times\left(\vec{n}\times\vec{l}\right) = \vec{n}\left(\vec{m}\vec{l}\right) - \vec{l}\left(\vec{m}\vec{n}\right)<br />

Just in case I forgot something important, the problem appears in Physical Review A 80, 022328, page 3 (http://pra.aps.org/abstract/PRA/v80/i2/e022328" ).

The Attempt at a Solution


I desperately reproduced the following steps over and over again (so I'm relatively sure they are correct). But I just don't know where to go from there:

\hat{P}_t^{-1} \left( \vec{\sigma} \cdot \vec{A} \right) \hat{P}_t<br />

using (I), i obtain:
\left[\cos{\frac{\Psi}{2}} + i\left(\vec{\sigma}\cdot\hat{a}\right) \sin{\frac{\Psi}{2}}\right]\cdot\<br /> \left( \vec{\sigma} \cdot \vec{A} \right)\cdot\<br /> \left[\cos{\frac{\Psi}{2}} - i\left(\vec{\sigma}\cdot\hat{a}\right) \sin{\frac{\Psi}{2}}\right]<br />

expanding, using \sin{\frac{\Psi}{2}}\cdot \cos{\frac{\Psi}{2}} = \frac{1}{2} \sin{\Psi} yields:
<br /> \cos^2{\frac{\Psi}{2}} \left(\vec{\sigma}\vec{A}\right) +\<br /> \frac{i}{2} \sin{\Psi} \left[ \left( \vec{\sigma} \hat{a} \right) \left( \vec{\sigma} \vec{A} \right) - \left( \vec{\sigma} \vec{A} \right) \left( \vec{\sigma}\hat{a} \right) \right] +\<br /> \sin^2{\frac{\Psi}{2}} \left( \vec{\sigma}\hat{a} \right) \left( \vec{\sigma}\vec{A}\right) \left(\vec{\sigma}\hat{a}\right)<br />

using (II) two times on \left( \vec{\sigma} \hat{a} \right) \left( \vec{\sigma} \vec{A} \right) - \left( \vec{\sigma} \vec{A} \right) \left( \vec{\sigma}\hat{a} \right) together with \left[\hat{a},\vec{A}\right]_- = 0 yields:
<br /> \cos^2{\frac{\Psi}{2}} \left(\vec{\sigma}\vec{A}\right) -\<br /> \sin{\Psi} \vec{\sigma} \left( \hat{a} \times \vec{A} \right) +\<br /> \sin^2{\frac{\Psi}{2}} \left( \vec{\sigma}\hat{a} \right) \left( \vec{\sigma}\vec{A}\right) \left( \vec{\sigma}\hat{a} \right)<br />

I'm reasonably sure so far, especially as -\sin{\Psi} \vec{\sigma} \left( \hat{a} \times \vec{A} \right) is a part of the solution. However, I can't see how (III) comes into play. The best i tried further on is again using (II) yielding:
<br /> \cos^2{\frac{\Psi}{2}} \left(\vec{\sigma}\vec{A}\right) -\<br /> \sin{\Psi} \vec{\sigma} \left( \hat{a} \times \vec{A} \right) +\<br /> \sin^2{\frac{\Psi}{2}} \left[ \hat{a}\vec{A} + i\vec{\sigma} \left(\hat{a} \times \vec{A} \right) \right] \left( \vec{\sigma}\hat{a} \right)<br />

However, this yet leaves me without any good idea how to go on.
I guess there is "just" some nifty algebra trick I constantly fail to see ... so every help is greatly appreciated.

Thank you in advance!
 
Last edited by a moderator:
Physics news on Phys.org


It's astonishing how long one can stare at an expression without the slightest idea until suddenly out of nowhere it seems absolutely clear where to go.
I'm not done yet because I've got something different to do, but I think I finally got the "nifty trick".
Will post again if it turns out to be correct!
 


OK, did the calculation, everything is fine now.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top