IsNoGood
- 5
- 0
Homework Statement
I'm trying to comprehend
\hat{P}_t^{-1} \left( \vec{\sigma} \cdot \vec{A} \right) \hat{P}_t = \<br /> \cos{\Psi\left(t\right)}\left( \vec{\sigma} \cdot \vec{A} \right) - \sin{\Psi\left(t\right)} \sigma \cdot \left[ \hat{a}\left(t\right) \times \vec{A} \right] + 2\sin^2{\frac{\Psi\left(t\right)}{2}} \left[ \hat{a}\left(t\right)\cdot\vec{A} \right]\left[\vec{\sigma}\cdot\hat{a}\left(t\right)\right]<br />
with \vec{\sigma} as the usual vector of pauli matrices, \vec{A} as an (more or less) arbitrary operator vector and \hat{a} as the axis of the rotation represented by \hat{P}_t.
Homework Equations
I already know \left[ \vec{\sigma},\vec{A} \right]_- = \left[ \vec{\sigma},\hat{a} \right]_- = \left[ \hat{a},\vec{A} \right]_- = 0.
Further on, the following identities are given (time dependencies \left(t\right) omitted):
(I) <br /> \hat{P}_t = \cos{\frac{\Psi}{2}} - i\left(\vec{\sigma}\cdot\hat{a}\right) \sin{\frac{\Psi}{2}}<br />
(II) <br /> \left( \vec{m}\cdot\vec{\sigma} \right) \left( \vec{n}\cdot\vec{\sigma} \right) = \<br /> \vec{m}\cdot\vec{n} + i\vec{\sigma} \cdot \left( \vec{m} \times \vec{n} \right)<br />
(III) <br /> \vec{m}\times\left(\vec{n}\times\vec{l}\right) = \vec{n}\left(\vec{m}\vec{l}\right) - \vec{l}\left(\vec{m}\vec{n}\right)<br />
Just in case I forgot something important, the problem appears in Physical Review A 80, 022328, page 3 (http://pra.aps.org/abstract/PRA/v80/i2/e022328" ).
The Attempt at a Solution
I desperately reproduced the following steps over and over again (so I'm relatively sure they are correct). But I just don't know where to go from there:
\hat{P}_t^{-1} \left( \vec{\sigma} \cdot \vec{A} \right) \hat{P}_t<br />
using (I), i obtain:
\left[\cos{\frac{\Psi}{2}} + i\left(\vec{\sigma}\cdot\hat{a}\right) \sin{\frac{\Psi}{2}}\right]\cdot\<br /> \left( \vec{\sigma} \cdot \vec{A} \right)\cdot\<br /> \left[\cos{\frac{\Psi}{2}} - i\left(\vec{\sigma}\cdot\hat{a}\right) \sin{\frac{\Psi}{2}}\right]<br />
expanding, using \sin{\frac{\Psi}{2}}\cdot \cos{\frac{\Psi}{2}} = \frac{1}{2} \sin{\Psi} yields:
<br /> \cos^2{\frac{\Psi}{2}} \left(\vec{\sigma}\vec{A}\right) +\<br /> \frac{i}{2} \sin{\Psi} \left[ \left( \vec{\sigma} \hat{a} \right) \left( \vec{\sigma} \vec{A} \right) - \left( \vec{\sigma} \vec{A} \right) \left( \vec{\sigma}\hat{a} \right) \right] +\<br /> \sin^2{\frac{\Psi}{2}} \left( \vec{\sigma}\hat{a} \right) \left( \vec{\sigma}\vec{A}\right) \left(\vec{\sigma}\hat{a}\right)<br />
using (II) two times on \left( \vec{\sigma} \hat{a} \right) \left( \vec{\sigma} \vec{A} \right) - \left( \vec{\sigma} \vec{A} \right) \left( \vec{\sigma}\hat{a} \right) together with \left[\hat{a},\vec{A}\right]_- = 0 yields:
<br /> \cos^2{\frac{\Psi}{2}} \left(\vec{\sigma}\vec{A}\right) -\<br /> \sin{\Psi} \vec{\sigma} \left( \hat{a} \times \vec{A} \right) +\<br /> \sin^2{\frac{\Psi}{2}} \left( \vec{\sigma}\hat{a} \right) \left( \vec{\sigma}\vec{A}\right) \left( \vec{\sigma}\hat{a} \right)<br />
I'm reasonably sure so far, especially as -\sin{\Psi} \vec{\sigma} \left( \hat{a} \times \vec{A} \right) is a part of the solution. However, I can't see how (III) comes into play. The best i tried further on is again using (II) yielding:
<br /> \cos^2{\frac{\Psi}{2}} \left(\vec{\sigma}\vec{A}\right) -\<br /> \sin{\Psi} \vec{\sigma} \left( \hat{a} \times \vec{A} \right) +\<br /> \sin^2{\frac{\Psi}{2}} \left[ \hat{a}\vec{A} + i\vec{\sigma} \left(\hat{a} \times \vec{A} \right) \right] \left( \vec{\sigma}\hat{a} \right)<br />
However, this yet leaves me without any good idea how to go on.
I guess there is "just" some nifty algebra trick I constantly fail to see ... so every help is greatly appreciated.
Thank you in advance!
Last edited by a moderator: