Solving an Electric Field Problem: Zero Potential?

itsrelative
Messages
2
Reaction score
0

Homework Statement


The problem is as shown in the attached file.


Homework Equations





The Attempt at a Solution


I got 0 for the potential, which would mean zero for the electric field. I don't understand, in a conceptual way, how zero could be the correct answer.
 

Attachments

  • 5.doc
    5.doc
    33.6 KB · Views: 245
Physics news on Phys.org
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top