VinnyCee
- 486
- 0
Here is the circuit:
http://img208.imageshack.us/img208/6185/ch3prob26mn0.jpg
We are supposed to find v1, v2 and v3.
My work so far:
i_1\,=\,\frac{v_3\,-\,v_2}{5\,\Omega}\,,\,i_2\,=\,\frac{v_3\,+\,10\,V}{15\,\Omega}\,,\,i_3\,=\,\frac{v_2\,-\,4\,i_0}{20\,\Omega}\,,\,i_4\,=\,\frac{v_1\,-\,15\,V}{20\,\Omega}
(KVL 1): 10\,i_3\,+\,4\,i_0\,=\,5\,i_1\,+\,20\,i_4\,+\,15V
(KVL 2): 15\,i_2\,-\,10\,V\,-\,4\,i_0\,-\,5\,i_3\,-\,5\,i_1\,=\,0
(KVL 3): 5\,i_1\,+\,5\,(i_1\,-\,i_3)\,+\,10\,i_o\,=\,0
(KVL 4 - Loops 1 and 2): 15\,i_2\,-\,10\,V\,-\,15\,V\,-\,20\,i_4\,-\,5\,(i_1\,-\,i_3)\,-\,5\,i_1\,=\,0
Using these equations, I get infinite answers. I did not list KVL 5, which is the whole outer loop, but I think that it is incorrect anyways becuase I am getting 0 = 0 for the last two rows in the matrix. Can someone please help?
EDIT:
The 3V source at the top of the schematic should actually be a 3A independent current source.
http://img208.imageshack.us/img208/6185/ch3prob26mn0.jpg
We are supposed to find v1, v2 and v3.
My work so far:
i_1\,=\,\frac{v_3\,-\,v_2}{5\,\Omega}\,,\,i_2\,=\,\frac{v_3\,+\,10\,V}{15\,\Omega}\,,\,i_3\,=\,\frac{v_2\,-\,4\,i_0}{20\,\Omega}\,,\,i_4\,=\,\frac{v_1\,-\,15\,V}{20\,\Omega}
(KVL 1): 10\,i_3\,+\,4\,i_0\,=\,5\,i_1\,+\,20\,i_4\,+\,15V
(KVL 2): 15\,i_2\,-\,10\,V\,-\,4\,i_0\,-\,5\,i_3\,-\,5\,i_1\,=\,0
(KVL 3): 5\,i_1\,+\,5\,(i_1\,-\,i_3)\,+\,10\,i_o\,=\,0
(KVL 4 - Loops 1 and 2): 15\,i_2\,-\,10\,V\,-\,15\,V\,-\,20\,i_4\,-\,5\,(i_1\,-\,i_3)\,-\,5\,i_1\,=\,0
Using these equations, I get infinite answers. I did not list KVL 5, which is the whole outer loop, but I think that it is incorrect anyways becuase I am getting 0 = 0 for the last two rows in the matrix. Can someone please help?
EDIT:

Last edited by a moderator: