Solving Epsilon Delta Proof: |x^2 - 9| < ε

kramer733
Messages
322
Reaction score
0

Homework Statement



if |x-3| < ε/7 and 0 < x ≤ 7 prove that |x^2 - 9| < ε

Homework Equations





The Attempt at a Solution



So ths is what I did so far.

|x+3|*|x-3| < ε (factored out the |x^2 - 9|)

|x+3|*|x-3| < |x+3|* ε/7 < ε (used the fact that |x-3| < ε/7)

|x+3|* ε/7 *7 < ε*7|x-3| < ε/7*7 (multiplied both sides of the inequality by 7)

I suck at epsilon delta proofs and have no idea where to go from here.
 
Physics news on Phys.org
kramer733 said:

Homework Statement



if |x-3| < ε/7 and 0 < x ≤ 7 prove that |x^2 - 9| < ε

Homework Equations





The Attempt at a Solution



So ths is what I did so far.

|x+3|*|x-3| < ε (factored out the |x^2 - 9|)

|x+3|*|x-3| < |x+3|* ε/7 < ε (used the fact that |x-3| < ε/7)

|x+3|* ε/7 *7 < ε*7|x-3| < ε/7*7 (multiplied both sides of the inequality by 7)

I suck at epsilon delta proofs and have no idea where to go from here.
It looks to me like the problem should read something like:
if |x-3| < ε/7 and 0 < x-3 ≤ 1, prove that |x2 - 9| < ε​
Otherwise you can only show that |x2 - 9| < (10/7) ε .

More importantly, you are to prove that |x2 - 9| < ε. The way you are trying to go about this is to assume the fact which you are trying to prove. That is not a valid way to go about this.

Added in Edit:

I had a typo originally. See the correction in Red.
 
Last edited:
How do i get started on this proof then/?
 
kramer733 said:
How do i get started on this proof then/?

If x-3 ≤ 1, what does that say about x+3 ?
 
x+3<7
 
kramer733 said:
x+3<7
Correct.

I suppose I should have asked "What if -1 ≤ x-3 ≤ 1" or any suitable left hand value.

So, if 5 ≤ x+3 ≤ 7, then you can definitely say that |x+3| ≤ 7 . Correct?
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top