Solving for Time: Dropped Pop Can Reaches the Ground

  • Thread starter Thread starter powerxranger1
  • Start date Start date
  • Tags Tags
    Ground Time
AI Thread Summary
A hot air balloon rises at a constant velocity of 4 m/s before a can of pop is dropped from a height of 4 m. The initial velocity of the can is 4 m/s upwards, and it experiences free fall with an acceleration of 9.8 m/s² downwards. The correct approach to determine the time it takes for the can to reach the ground involves using kinematic equations while paying attention to the signs of the values. Initial calculations suggesting a time of 2 seconds were incorrect due to misunderstanding the final velocity and acceleration. Properly applying the kinematic equations will yield the accurate time for the can's descent.
powerxranger1
Messages
5
Reaction score
0

Homework Statement


A hot air balloon is rising upward with a constant velocity of 4m/s. As the balloon reaches a height of 4m above the ground the balloonist accidently drops a can of pop over the edge of the basket. How long does it take the pop can to reach the ground?

V2 = 4m/s [up]
v1 = 0
d = 4m

Homework Equations


d=1/2 (v2 + v1) t


The Attempt at a Solution


I got the anser 2 seconds! Please tell me if i did it correctly
 
Physics news on Phys.org
Hi powerxranger1,

powerxranger1 said:

Homework Statement


A hot air balloon is rising upward with a constant velocity of 4m/s. As the balloon reaches a height of 4m above the ground the balloonist accidently drops a can of pop over the edge of the basket. How long does it take the pop can to reach the ground?

V2 = 4m/s [up]
v1 = 0
d = 4m

Homework Equations


d=1/2 (v2 + v1) t


The Attempt at a Solution


I got the anser 2 seconds! Please tell me if i did it correctly

No, I don't believe that's right. The initial velocity of the can is 4m/s upwards, like you have, but the final velocity is not given. (The final velocity in this case would be the velocity just before the can touches the ground, so it would not be zero.)

So you know the initial velocity and the displacement (but check the signs!); what else do you know about the can's motion? That will help you choose the best kinematic equation to find the time.
 
Hm, I'm not really sure that there is any other information given about the can, since there's only two numbers given. I don't understand how to find another piece of information.
 
powerxranger1 said:
Hm, I'm not really sure that there is any other information given about the can, since there's only two numbers given. I don't understand how to find another piece of information.

The can is in free fall; what does that tell you? That will give you the third quantity, and so you can find the time.
 
Oh. Does that mean it's just 9.8 m/s?
 
powerxranger1 said:
Oh. Does that mean it's just 9.8 m/s?

Yes, that's the right magnitude for the acceleration. (And the units are m/s^2.) Just remember to use the correct signs for the initial velocity, displacement and acceleration when you use them in your equation.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top