Here is the Vandermonde setup. If you aren't familiar with looking at Vandermonde matrices and Newton sums in a Hankel matrix, it may not make too much sense.
- - - -
0.)
Consider
##\mathbf W := \begin{bmatrix}
1& x\\
1 & y
\end{bmatrix}##
where ##\mathbf W## is a ##2## x ##2## Vandermonde matrix.
note that
##\begin{bmatrix}
1& x & x^2\\
1 & y& y^2
\end{bmatrix}##
is a 2 x 3 Vandermonde matrix, which is implicitly referenced during this writeup with ##\mathbf H_{big}##.
now also consider the following two diagonal matrices
##\mathbf D := \begin{bmatrix}
x& 0\\
0 & y
\end{bmatrix}##
##\mathbf M := \begin{bmatrix}
m& 0\\
0 & n
\end{bmatrix}##
Putting these together, we have:
##\mathbf W^T \mathbf M \mathbf W = \mathbf H_0= \left[\begin{matrix}m+n & 7\\7 & 49\end{matrix}\right]
##
##\mathbf W^T \mathbf M \mathbf D \mathbf W = \mathbf H_1 =\left[\begin{matrix}7 & 49\\49 & 133\end{matrix}\right]##
where ##\mathbf H_0## and ##\mathbf H_1## are both Hankel matrices carrying the relevant Newton sums. (e.g. see problem 112 on page 75 of this:
http://perso.ens-lyon.fr/serre/DPF/exobis.pdf .)
1.)
now consider the enlarged Hankel matrix, which takes into account all of your information:
##\mathbf H_{big} = \left[\begin{matrix}m+n & 7&49\\7 & 49&133\\49&133&406 \end{matrix}\right]##
we know that this has at most rank 2 (why? -- and a we'll see it is in fact rank 2 momentarily). Since, ##rank\big(\mathbf H_{big}\big) \lt 3##, we know ##det\big(\mathbf H_{big}\big) = 0##.
##det\big(\mathbf H_{big}\big) = 0 = 2205(m + n) - 46305 \to m + n = 21##
we now know ##\big(m +n\big)
## which is directly useful as part of the final answer, and it allows us to refine ##\mathbf H_0##
##\mathbf W^T \mathbf M \mathbf W = \mathbf H_0= \left[\begin{matrix}21 & 7\\7 & 49\end{matrix}\right]
##
- - - -
edit:
The below steps work to get the solution, but they are a bit ugly. I subsequently came up with a more satisfying approach in post #18. You can skip the below steps and jump straight into post #18 if you are so inclined.
- - - -
2.)
note that ##det\big(\mathbf H_0\big) = 980 \neq 0##, which tells us that ##m \neq 0##, ##n \neq 0##, and ##x \neq y## (why?).
##det\big(\mathbf H_1\big) =-1470##
tells us similar things. If we divide one determinant by the other, we get:
##\frac{-1470}{980}= \frac{det\big(\mathbf H_1\big)}{det\big(\mathbf H_0\big)} = \frac{det\big(\mathbf W^T\big) det\big(\mathbf M\big)det \big( \mathbf D\big)det \big(\mathbf W \big)}{det\big(\mathbf W^T\big) det\big(\mathbf M\big) det\big(\mathbf W\big) } = det\big(\mathbf D\big) = xy##
hence we have
##xy = -\frac{3}{2}##
Two down, one to go.
3.)
This final part can certainly could be done by hand -- we've all done 2x2 matrix multiplication and 2x2 matrix inversion by hand, but this is the one part that I think is a bit too unpleasant to do by hand (and hence doing the matrix multiplication and inversion with the help of a computer is a lot nicer).
reconsider
##\mathbf W^T \mathbf M \mathbf W = \mathbf H_0= \left[\begin{matrix}21 & 7\\7 & 49\end{matrix}\right]
##
we know ##det\big(\mathbf W\big)\neq 0##, hence ##\mathbf W^{-1}## exists. Thus we have##\mathbf M = \big(\mathbf W^T\big)^{-1} \mathbf H_0 \big(\mathbf W\big)^{-1} = \left[\begin{matrix}\frac{1}{\left(x - y\right)^{2}} \left(- 7 y \left(- 3 y + 1\right) - 7 y + 49\right) & \frac{1}{\left(x - y\right)^{2}} \left(7 x \left(- 3 y + 1\right) + 7 y - 49\right)\\\frac{1}{\left(x - y\right)^{2}} \left(7 x - 7 y \left(3 x - 1\right) - 49\right) & \frac{1}{\left(x - y\right)^{2}} \left(7 x \left(3 x - 1\right) - 7 x + 49\right)\end{matrix}\right]
##
The left hand side is diagonal, so the right hand side is as well, i.e.
##\mathbf M = \left[\begin{matrix}\frac{1}{\left(x - y\right)^{2}} \left(- 7 y \left(- 3 y + 1\right) - 7 y + 49\right) & 0\\ 0 & \frac{1}{\left(x - y\right)^{2}} \left(7 x \left(3 x - 1\right) - 7 x + 49\right)\end{matrix}\right]##
so if we look at that bottom left corner, we see:
##\frac{1}{(x - y)^{2}} \big(7 x - 7 y \left(3 x - 1\big) - 49\right) = 0##
i.e. we know
##7 x - 7 y \left(3 x - 1\right) = 7x -21xy +7y = 49 ##
equivalently:
## x -3xy +y = 7##
substituting in the value of ##xy## we see
##x - 3\big(-\frac{3}{2}\big) +y = x + \frac{9}{2} +y = \frac{14}{2}##
##x + y = \frac{5}{2}##
- - - -
At this stage we could easily solve for individual values of x and y (just root finding of a quadratic polynomial) and also m and n, though we don't need them.
Thus the solution to your question is
##2014\Big(\big(x+y\big)-\big(xy\big)\Big)-100\Big(m+n\Big) = 2014\Big(\big(\frac{5}{2}\big) - \big(-\frac{3}{2}\big) \Big) - 100\Big(21\Big) = 2014\big(4\big) - 2100 = 5956 ##